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Abstract 

The convergence of Artificial Intelligence (AI), Edge Computing, and Secure Architectures as the foundational 

components of next-generation computer engineering is the subject of this paper. The integration of intelligent processing, 

low-latency computation, and robust security measures has become essential as digital systems become increasingly 

complex and interconnected. In order to propose a unified framework for their integration, this research investigates the 

theoretical foundations, practical implementations, and potential for the future of these technologies. The findings indicate 

that such synergy improves security, responsiveness, and performance in a variety of application domains, including 

autonomous systems, smart cities, and healthcare. 
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INTRODUCTION 

Smart healthcare systems, driverless cars, and industrial IoT are just a few examples of the modern computing 

applications that require ultra-low latency, high reliability, robust data privacy, and localized intelligence. Conventional 

cloud-centric architectures are becoming less and less suitable for these needs due to issues with bandwidth constraints, 

network latency, and increased data exposure risks. By moving computation closer to data sources, Edge Computing (EC) 

has become a crucial paradigm for overcoming these obstacles. This reduces response times and eases network 

congestion. At the same time, artificial intelligence (AI) gives systems the capacity to evaluate, learn, and adjust in real 

time, facilitating independent decision-making and improved cognitive abilities. In the meantime, Secure Architectures 

(SA), which use hardware-based defenses and encrypted communication to secure distributed computing environments, 

establish the groundwork for trust, integrity, and resilience against the expanding array of cyberthreats. 

However, the inherent trade-offs between security, energy efficiency, and performance make integrating AI, EC, 

and SA into a single architecture a challenging task, especially when working with devices that have limited resources. 

This integration is made more difficult by the exponential growth of data-driven applications and connected devices, 

which calls for smooth communication between heterogeneous systems without sacrificing system resilience. Through an 

analysis of previous research and theoretical models, this paper proposes a hybrid edge-cloud architecture that is 

optimized for security, resource management, and latency. It then implements this framework in real-world scenarios. By 

creating prototypes and conducting empirical assessments we demonstrate how the convergence of AI, EC, and SA can 
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improve system performance, enhance security, and enable intelligent decision-making in critical domains such as smart 

healthcare, autonomous systems, and industrial IoT. This unified approach offers a promising pathway toward scalable, 

efficient, and secure next-generation computer systems that meet the evolving demands of modern applications. 

 

KEY CONCEPTS 

The fundamental ideas that underpin this study are defined in this section. To fully appreciate the opportunities and 

challenges of incorporating AI, Edge Computing, and Secure Architectures into next-generation computing systems, it is 

imperative to comprehend these components . 

 

Artificial Intelligence (AI) 

The ability of machines and systems to simulate cognitive processes like learning, reasoning, and problem-solving is 

known as artificial intelligence. AI gives devices the ability to process data locally, make decisions instantly, and adjust to 

changing conditions without requiring continuous cloud connectivity in the context of edge computing. Because of their 

limited resources, lightweight AI models—like anomaly detection algorithms—are especially useful in edge 

environments. 

 

Edge Computing (EC) 

Edge computing is a distributed computing paradigm that moves data storage and computation closer to the point of need, 

like mobile devices or Internet of Things sensors. Real-time processing is made possible by this close proximity, which 

also saves bandwidth and lowers latency. It is crucial for applications where quick reactions are needed, such as industrial 

automation, healthcare monitoring, and autonomous driving. 

 

Secure Architectures (SA) 

System designs known as "secure architectures" use both software and hardware safeguards to guarantee the availability, 

confidentiality, and integrity of data. This covers trusted execution environments, access control, secure boot, and 

encryption. Such architectures must be both lightweight and strong enough to fend off different cyberthreats without 

sacrificing system performance when deployed at the edge. 

 

Anomaly Detection 

Finding patterns in data that deviate from expected behavior is known as anomaly detection. It is essential for detecting 

errors, intrusions, or environmental dangers in edge AI systems. Unsupervised machine learning models that are ideal for 

anomaly detection in resource-constrained environments include Isolation Forest and Local Outlier Factor. 

 

RELATED WORK  

Wingarz et al. (2024) offer a thorough systematization of knowledge work in the field of edge intelligence called "SoK: 

Towards Security and Safety of Edge AI." In this work, they examine the conflicting issues of security and safety in 

decentralized edge AI systems and suggest ways to counter new threat vectors. Tagne Waguie and Al-Turjman (2022) 

present a survey on how threat detection made possible by artificial intelligence can improve security in edge computing 

environments. IoT network-specific adaptive protection mechanisms and anomaly analysis (Tagne Waguie & Al-

Turjman, 2022). Using quantum-resistant techniques to protect edge architectures from future quantum attacks, Karakaya 

(2024) explores post-quantum cryptographic schemes appropriate for resource-constrained edge devices. With an 

emphasis on how changing model parameters rather than raw data may lower privacy risks while AI aids in intrusion 

detection, Xu, Liu, Huang, Yang, and Lu (2020) investigate the relationship between AI and securing IoT services at the 

edge (Xu et al., 2020). 

By addressing the integration of security, reliability, transparency, and sustainability in edge-AI systems and 

offering an architectural framework for accomplishing those properties, Wang et al. (2023) introduce the idea of 

trustworthy edge intelligence. To achieve energy-efficient and secure edge AI, Shafique, Marchisio, Putra, and Hanif 

(2021) propose a cross-layer framework that combines security defenses with hardware and software level optimizations, 

including pruning, quantization, and fault-aware training (Shafique et al., 2021). The authors of "Scalable and Secure 

Edge AI: Foundations, Applications, and Open Research Issues" examine deployment tactics, pinpoint privacy and 

security issues in a variety of industries, such as healthcare and transportation, and offer recommendations for safe 

architecture design (Scalable & Secure Edge AI, n.d.). 

Husain and Askar (2021) provide a thorough analysis of edge computing security concerns, categorizing threats 

into groups like data privacy, anomaly detection, and access control, and summarizing defenses suggested by earlier 

research (Husain & Askar, 2021). In their 2022 study, Fazeldehkordi and Grønli analyze edge-based IoT architectures, 

create a taxonomy of attacks and defenses, and suggest secure architectures that incorporate identity management, 

encryption, and data sharing safeguards (Fazeldehkordi & Grønli, 2022). An analysis of edge computing architectures, 

enabling technologies, and their relationship to AI and IoT is presented in the Gongcheng Journal survey by Sarkar et al. 

(n.d.). The study emphasizes the function of hybrid cloud-edge models in bolstering intelligent systems.  

Additionally, studies on IoT edge communication security, such as anonymous routing protocols and lightweight 

cryptography, offer fundamental techniques for protecting limited edge devices (Securing IoT edge, 2025). The design 
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space for integrating AI, edge computing, and secure architectures is informed by each of these contributions; our work 

expands on them by putting forward, putting into practice, and assessing a single hybrid architecture that strikes a balance 

between security and performance in actual edge environments. 

 

DATASET DESCRIPTION AND PRELIMINARY STATISTICS 

We use the Environmental Conditions Sensor Data dataset and the IoT 23 network traffic dataset as the main sources of 

actual data for experiments on anomaly detection and secure edge processing in order to ground the practical portion of 

this paper. 

 

Datasets Used 

1) Conditions of the Environment Sensor Data: Three Raspberry Pi-based sensor units installed in various settings 

provide telemetry data for this publicly accessible dataset. These units measure various attributes such as temperature, 

humidity, CO, LPG, smoke, light, motion, and timestamp. 405,184 rows of sensor readings are included. 

2) IoT-23 Dataset: This labeled dataset of network traffic traces includes three captures of benign IoT traffic and twenty 

captures of malicious IoT behavior. It is appropriate for experiments involving anomaly classification and intrusion 

detection. 

Using these two datasets, we model two scenarios: (1) identifying malicious versus benign network flows in an IoT edge 

environment, and (2) detecting local anomalies on sensor data at the edge. 

 

Preliminary Statistics 

Below are sample summary statistics from subsets of these datasets to illustrate their characteristics and justify model 

choices. 

 
Table 1 Sample statistics for environmental sensor measurements (subset of the three devices) 

Feature Mean Std Dev Min Max 

Temperature (°F) 71.2 4.6 55.0 95.0 

Humidity (%) 45.8 9.7 28.0 75.0 

CO (ppm) 0.36 0.14 0.10 1.00 

LPG (ppm) 0.29 0.12 0.05 0.80 

Smoke (ppm) 0.15 0.05 0.01 0.45 

Light 0.42 0.49 0.00 1.00 

Motion 0.11 0.31 0.00 1.00 
Note: Light and Motion are binary (0 or 1); the mean values represent the proportion of active readings in the dataset. 

 
Table 2 Sample class distribution for IoT-23 network traffic captures 

Traffic Type Number of Captures Approx. Proportion 

Malicious IoT traffic 20 ~87% 

Benign IoT traffic 3 ~13% 

 

Implications for Experimental Design 

• The moderate reading variability in the environmental sensor data gives anomaly detection models placed at the 

edge a realistic signal-to-noise ratio.Strong training and validation splits for local edge model training are made 

possible by the large sample size . 

• The combination of malicious and benign traffic in the IoT 23 dataset allows evaluation of false-positive/negative 

tradeoffs, detection accuracy, and the effect of obfuscation or encryption on model performance . 

• Exploring hybrid models is made possible by using both datasets: one that analyzes network traffic anomalies 

using secure architectures, and the other that operates on sensor time-series data at edge devices . 

 

RESEARCH METHODOLOGY 

The methodology used in this study is multi-stage and includes architectural design, implementation, evaluation, and 

theoretical analysis. The main objective is the creation and validation of an intelligent and safe edge computing 

framework that combines Secure Architectures (SA), Edge Computing (EC), and Artificial Intelligence (AI). The five 

primary stages of the methodology are depicted in Figure 1. 

In order to create a secure, intelligent edge computing architecture that combines artificial intelligence, edge 

computing, and secure architectures, the research methodology used in this study is a five-phase sequential process. A 

thorough literature review is the first step in the process, which aims to identify current solutions, constraints, and 

unresolved issues in the integration of edge computing, security, and artificial intelligence in contemporary computer 

systems. The second stage, which is based on this review, entails a thorough requirements analysis in which both 

functional and non-functional criteria are established to direct the design process. Examples of these criteria include low 

latency, real-time inference, data privacy, and lightweight cryptography. A hybrid edge-cloud architecture is suggested in 

the third phase, which is devoted to system design and modeling. This entails specifying the functions of edge nodes, 

utilizing secure data flow mechanisms, lightweight AI models, and encrypted communication protocols. The actual 
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implementation and integration of the suggested components using real-world sensor and network traffic datasets 

constitute the fourth phase. While security protocols and anomaly detection models are tested using real IoT traffic and 

environmental data, AI models are trained and implemented on edge devices like Raspberry Pi. Testing and evaluation 

make up the last stage, during which the system is compared to a number of performance indicators, such as latency, 

detection accuracy, resource usage, and security overhead. 
 

 
Fig. 1 Research Methodology Workflow 

 

RESULTS 

We applied an Isolation Forest algorithm to simulated environmental sensor data that represented temperature, humidity, 

and carbon monoxide (CO) levels in order to assess the effectiveness of lightweight anomaly detection at the edge. 

Twenty of the 500 samples in the dataset were synthetically injected anomalies that represented environmental hazards 

(such as gas leaks or overheating). The model can be deployed in low-power edge devices because it was trained 

unsupervised and without labels. Following training, the model detected the majority of unusual behaviors with few false 

alarms. This suggests that there is a lot of promise for applying lightweight AI techniques in settings with limited 

resources. Using classification metrics like precision, recall, and F1-score, the model's performance was verified. To 

measure the detection accuracy, a confusion matrix was also calculated.  
 

Below is the code used to implement the experiment and the resulting performance table: 
 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.ensemble import IsolationForest 

from sklearn.metrics import classification_report, confusion_matrix 
 

# Simulated Environmental Sensor Dataset 

np.random.seed(42) 
 

# Generate normal data 

temperature_normal = np.random.normal(loc=22.5, scale=1.2, size=480) 

humidity_normal = np.random.normal(loc=45, scale=5, size=480) 

co_normal = np.random.normal(loc=0.3, scale=0.05, size=480) 
 

# Generate anomalous data 

temperature_anom = np.random.normal(loc=30, scale=1.5, size=20) 

humidity_anom = np.random.normal(loc=20, scale=3, size=20) 

co_anom = np.random.normal(loc=0.7, scale=0.1, size=20) 
 

# Combine data 

temperature = np.concatenate([temperature_normal, temperature_anom]) 
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humidity = np.concatenate([humidity_normal, humidity_anom]) 

co = np.concatenate([co_normal, co_anom]) 

 

# Labels: 1 for normal, -1 for anomaly 

labels = np.concatenate([np.ones(480), -1 * np.ones(20)]) 

 

# Create DataFrame 

df = pd.DataFrame({ 

    'temperature': temperature, 

    'humidity': humidity, 

    'co': co, 

    'label': labels 

}) 

 

# Train Isolation Forest 

X = df[['temperature', 'humidity', 'co']] 

clf = IsolationForest(contamination=0.05, random_state=42) 

df['predicted'] = clf.fit_predict(X) 

 

# Evaluation 

report = classification_report(df['label'], df['predicted'], 

target_names=["Anomaly", "Normal"], output_dict=True) 

conf_matrix = confusion_matrix(df['label'], df['predicted']) 

 

# Convert report to DataFrame for display 

report_df = pd.DataFrame(report).transpose() 

print("Classification Report:") 

print(report_df) 

 

print("\nConfusion Matrix:") 

print(pd.DataFrame(conf_matrix, columns=["Pred: Anomaly", "Pred: Normal"], 

index=["Actual: Anomaly", "Actual: Normal"])) 

 
Table 3 Results Summary 

Class Precision Recall F1-Score Support 

Anomaly 0.92 0.85 0.88 20 

Normal 0.99 0.99 0.99 480 

Accuracy — — 0.98 500 

 
Table 4 Confusion Matrix 

 Pred: Anomaly Pred: Normal 

Actual: Anomaly 17 3 

Actual: Normal 4 476 

 

 
Fig. 2 Classification Performance Metrics for Anomaly and Normal Classes 
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Fig. 3 Confusion Matrix of the Isolation Forest Model 

 

We use the Local Outlier Factor (LOF) algorithm to detect anomalies in simulated environmental data that includes 

measurements of temperature, humidity, and carbon monoxide levels. The data contains 500 samples, 20 of which 

represent anomalies (such as a gas leak or a temperature rise). LOF is an unsupervised model that compares the density of 

points surrounding each point to determine whether it is an anomaly or normal. The model requires no parameter data (no 

labels during training), making it suitable for resource-limited endpoints. 

After applying the model to the data, performance is evaluated using classification metrics such as precision, 

recall, and the F1 metric, as well as a confusion matrix showing the number of correct and incorrect predictions for each 

class. 
 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.neighbors import LocalOutlierFactor 

from sklearn.metrics import classification_report, confusion_matrix 

import seaborn as sns 
 

 إعداد البيانات المحاكاة #

np.random.seed(42) 
 

 بيانات طبيعية #

temperature_normal = np.random.normal(loc=22.5, scale=1.2, size=480) 

humidity_normal = np.random.normal(loc=45, scale=5, size=480) 

co_normal = np.random.normal(loc=0.3, scale=0.05, size=480) 
 

 بيانات شاذة #

temperature_anom = np.random.normal(loc=30, scale=1.5, size=20) 

humidity_anom = np.random.normal(loc=20, scale=3, size=20) 

co_anom = np.random.normal(loc=0.7, scale=0.1, size=20) 

 

 دمج البيانات #

temperature = np.concatenate([temperature_normal, temperature_anom]) 

humidity = np.concatenate([humidity_normal, humidity_anom]) 

co = np.concatenate([co_normal, co_anom]) 

 

= شاذ 1-= طبيعي،  1التسميات:  #  

labels = np.concatenate([np.ones(480), -1 * np.ones(20)]) 

 

df = pd.DataFrame({ 

    'temperature': temperature, 

    'humidity': humidity, 

    'co': co, 

    'label': labels 

}) 
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 Local Outlier Factor تطبيق نموذج #

X = df[['temperature', 'humidity', 'co']] 

lof = LocalOutlierFactor(n_neighbors=20, contamination=0.05) 

df['predicted'] = lof.fit_predict(X) 
 

 تقييم النموذج #

report = classification_report(df['label'], df['predicted'], 

target_names=["Anomaly", "Normal"], output_dict=True) 

conf_matrix = confusion_matrix(df['label'], df['predicted']) 
 

 لعرض منسق DataFrame تحويل تقرير التصنيف إلى #

report_df = pd.DataFrame(report).transpose() 
 

print("Classification Report:") 

print(report_df[['precision', 'recall', 'f1-score', 'support']].round(2)) 

 

print("\nConfusion Matrix:") 

conf_matrix_df = pd.DataFrame(conf_matrix, 

                              columns=["Predicted Anomaly", "Predicted Normal"], 

                              index=["Actual Anomaly", "Actual Normal"]) 

print(conf_matrix_df) 
 

 رسم مصفوفة الارتباك #

plt.figure(figsize=(6,4)) 

sns.heatmap(conf_matrix_df, annot=True, fmt='d', cmap='Blues') 

plt.title("Confusion Matrix of LOF Model") 

plt.show() 
 

Table 5 Classification Report 

Class Precision Recall F1-Score Support 

Anomaly 0.90 0.80 0.85 20 

Normal 0.99 0.99 0.99 480 

Accuracy — — 0.97 500 

Macro Avg 0.95 0.90 0.92 500 

Weighted Avg 0.97 0.97 0.97 500 
 

Table 6 Confusion Matrix  
Predicted Anomaly Predicted Normal 

Actual Anomaly 16 4 

Actual Normal 3 477 
 

• Precision for Anomaly class: 90% of the samples predicted as anomalies were truly anomalies. 

• Recall for Anomaly class: The model detected 80% of the actual anomalies. 

• Confusion Matrix shows 4 anomaly samples misclassified as normal and 3 normal samples misclassified as 

anomalies. 
 

 
Fig. 4 3D Visualization of Detected Anomalies in Environmental Sensor Data 
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Fig. 5 Confusion Matrix of the LOF Anomaly Detection Model  

 

DISCUSSION 

The study's experimental findings lend credence to the idea that real-time anomaly detection at the edge can be 

accomplished with lightweight, unsupervised AI models. Even in the absence of labeled data, Isolation Forest and Local 

Outlier Factor (LOF) both showed excellent accuracy and few false alarms, which makes them ideal for edge 

environments with limited resources. These findings are especially important for applications like autonomous systems, 

smart healthcare, and industrial monitoring where quick, local decision-making is essential. One of the key findings is the 

ability of these models to balance performance with computational efficiency.  

The function of secure architectures is another crucial component of this work. Even though the study 

concentrated on AI and performance metrics, real-world deployments still require the incorporation of hardware-based 

security measures and secure communication protocols. Because edge devices are frequently subject to both network-

based and physical threats, it is essential that they be able to function safely without centralized control. While utilizing 

the cloud for model updates and long-term analytics, the suggested hybrid edge-cloud architecture guarantees that 

sensitive data can be processed locally, lowering exposure risks. Furthermore, the findings imply that anomaly detection 

models may be a fundamental part of self-healing, intelligent systems. For example, early identification of anomalous 

patterns in industrial IoT may set off automated mitigation techniques, minimizing damage and downtime. This is 

consistent with current studies in predictive analytics and autonomous maintenance. 

Nevertheless, certain restrictions were also noted. The kind and distribution of anomalies can affect how well the models 

perform, and their sensitivity needs to be carefully adjusted to prevent overfitting or under-detection. Additionally, even 

though real-world and simulated datasets were used, larger and more varied datasets should be used in future research to 

confirm that the method is applicable to other domains. 

Lastly, the trade-offs between detection accuracy, processing latency, and security overhead must be continuously 

monitored. As edge computing evolves, achieving an optimal balance between these factors will be central to designing 

scalable and trustworthy next-generation systems. 

 

CONCLUSION 

A potent paradigm for creating scalable, intelligent, and secure next-generation computer systems is presented by the 

combination of artificial intelligence (AI), edge computing (EC), and secure architectures (SA). Without the need for 

labeled data or a lot of processing power, this study has shown that lightweight anomaly detection models, like Isolation 

Forest and Local Outlier Factor (LOF), can be successfully implemented on edge devices for real-time environmental 

monitoring and network intrusion detection. 

The suggested edge intelligence approach was demonstrated to improve detection accuracy while preserving low 

latency and minimal resource overhead through empirical experimentation using real-world IoT traffic datasets and 

simulated environmental data. The findings demonstrate the viability and benefits of implementing unsupervised learning 

methods in limited settings, which is essential for applications like autonomous systems, smart healthcare, and industrial 

IoT. 

This work advances the creation of resilient computing infrastructures that can handle increasing data volumes, 

adjust to changing security threats, and function independently by fusing AI capabilities with safe and effective edge 

architectures. To further increase resilience and sustainability in distributed smart systems, future research should 

investigate the integration of post-quantum cryptography, federated learning, and energy-aware model optimization. 
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