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Abstract 

Identifying influential social network nodes is crucial in today's interconnected world for supporting strategic decision-

making in marketing, healthcare, and politics, enhancing information diffusion, and controlling the spread of false 

information. High-dimensional, noisy, and dynamic data that are typical of real-world networks pose a challenge for 

conventional influence detection techniques, which are frequently founded on measures of centrality. Their ability to 

accurately identify key influencers is hindered by these limitations. This study presents a hybrid strategy that combines 

Optimized Fuzzy Clustering with the SALT (Spatial-Temporal Adaptive Learning Technique) algorithm to address these 

issues. SALT enables the network to learn and adapt from temporal and spatial patterns, whereas fuzzy clustering takes 

into account the ambiguous and overlapping nature of social group memberships. Together, these methods make it easier 

and more accurate for the model to find influential nodes. The proposed method outperforms conventional methods in 

terms of accuracy, adaptability, and computational performance, as demonstrated by experiments on benchmark datasets 

including the Twitter and Facebook networks. Fuzzy logic and adaptive learning work well together to handle large 

amounts of dynamic data, making the method useful for detecting influence in changing social networks. 
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INTRODUCTION 

The entities represented as nodes and the interactions or relationships between them are referred to as edges in social 

networks, which are dynamic and complex systems. Common entities include individuals, organizations, or information 

sources. With the introduction of platforms like Twitter, Facebook, Instagram, and LinkedIn, these systems have 

significantly increased in size and influence. These platforms are now essential tools for communication, marketing, 

public awareness, and even political mobilization. The identification of influential nodes—users whose actions, decisions, 

or opinions affect a large portion of the network—is one of the most difficult aspects of social network analysis. 

According to Kitsak et al. (2010), the identification of such nodes can be used in a variety of fields, including political 

science, public health, and viral marketing (targeting key individuals to maximize product adoption), as well as political 

science (discovering opinion leaders in political movements). According to Freeman (1978), centrality metrics like degree 

centrality, closeness, betweenness, and eigenvector centrality are the primary components of traditional methods for 

identifying influence. Even though these methods are fundamental, they are constrained when used with noisy and 

dynamic real-world networks. In modern, ever-evolving digital ecosystems, conventional models make the incorrect 

assumptions that social networks are static and that nodes behave uniformly. We propose a novel hybrid framework that 

combines the Spatial-Temporal Adaptive Learning Technique (SALT) with Optimized Fuzzy Clustering to overcome 

these drawbacks. According to Bezdek et al. (1984), fuzzy clustering provides a more accurate representation of the 

overlapping nature of communities in social networks by softly classifying nodes and allowing them to belong to multiple 

communities with varying degrees of membership. In the meantime, the SALT algorithm lets the model changeover time 

and captures user behavior patterns in terms of spatial and temporal dynamics (Ahmed et al., 2019). By incorporating 

temporal patterns, contextual relevance, and uncertainty into the model's detection of influential nodes, this integration 

makes the model more adaptable to large-scale and rapidly evolving networks. 
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RELATED WORK 

Using a variety of computational methods, the issue of locating influential nodes in social networks has been extensively 

investigated. Classical models, such as the centrality-based metrics introduced by Freeman (1978), remain foundational in 

the field.  These metrics—including degree, closeness, and betweenness centrality—evaluate a node’s structural 

importance within the network.  However, they often assume static topologies and uniform node behavior, which do not 

hold in real-world, dynamic social networks . 

       * k-core* decomposition was proposed by Kitsak et al. (2010) as a method for locating nodes that are capable of 

triggering extensive influence cascades. Although this method outperforms traditional centrality metrics in some 

scenarios, it still lacks the capacity to incorporate temporal patterns or user heterogeneity.  In a similar vein, Kempe, 

Kleinberg, and Tardos (2003) used models like Independent Cascade and Linear Threshold to frame influence 

maximization as a stochastic optimization problem. While theoretically significant, these models require predefined 

influence probabilities and are computationally intensive . 

 Subsequent work by Chen, Wang, and Yang (2009) focused on improving the scalability of influence 

maximization algorithms through heuristic-based approximations.  Despite offering faster solutions, these methods 

remain constrained by their reliance on simplified diffusion models.  In parallel, Tang, Sun, and Wang (2009) introduced 

a topic-sensitive PageRank that integrates user-generated content into the influence analysis.  Although this added 

semantic depth, it still did not account for network evolution over time . 

 Methods based on machine learning have also gained popularity. Liu, Hu, and Tang (2012) applied supervised 

learning techniques to identify influencers based on graph structural features.  However, these models often struggle with 

generalizability and require large, labeled datasets.  Barbieri, Bonchi, and Manco (2013) introduced time-aware models 

that consider the frequency and recency of user actions.  While effective in incorporating temporal dynamics, they lack 

spatial context and community-awareness . 

  Other studies have explored the use of fuzzy logic to model the ambiguity in social relationships.  For example, 

Bezdek, Ehrlich, and Full (1984) developed the Fuzzy C-Means algorithm, which was later adapted for social network 

analysis (Zhang et al., 2013).  The overlapping nature of social groups is reflected in these models, which allow nodes to 

belong to multiple communities. However, traditional fuzzy clustering lacks adaptability to dynamic user behavior over 

time . 

 SALSA (Lempel & Moran, 2000) and TUNKR (Zhao et al., 2018) are two recent hybrid ranking systems that 

combine behavioral data with graph structure. Although promising, these models are often domain-specific and do not 

generalize well across different types of networks.  Adaptive learning methods have also taken into account temporal and 

spatial factors. Ahmed, Karypis, and Neville (2019) proposed a temporal learning framework for evolving networks, but 

without integration with clustering or community-based methods . 

 Additionally, research by Sun et al. (2018) combined content, structure, and temporal behavior using multi-view 

learning.  While comprehensive, these models are computationally heavy and lack interpretability.  Li et al. (2020) 

introduced reinforcement learning to adjust node influence scores over time, but their method did not account for 

overlapping community structures. 

 

METHODOLOGY 

To effectively identify influential nodes in noisy and dynamic social networks, the proposed approach combines the 

Spatial-Temporal Adaptive Learning Technique (SALT) with Optimized Fuzzy Clustering. By incorporating both 

community ambiguity and the evolution of user behavior over time and space, this hybrid model aims to overcome the 

drawbacks of conventional static methods.The methodology consists of four main phases: 

 

Data Preprocessing 

Data from social networks frequently contain information that is irrelevant, insufficient, or redundant. Thus, 

preprocessing is an essential step to ensure high-quality inputs for the model.  This phase includes: 

 • Node filtering: getting rid of inactive or isolated nodes that don't help the network move around. • Edge Weight 

Normalization: Using interaction frequency (such as the number of retweets or messages) to standardize the strength of 

connections • Temporal segmentation: breaking up the data into time windows to look for changes in behavior over 

various time periods. 

 

Optimized Fuzzy Clustering 

The Fuzzy C-Means (FCM) algorithm is used to deal with the overlapping and ambiguous nature of communities in 

social networks. Unlike hard clustering, FCM assigns each node a degree of membership to multiple clusters.  This phase 

includes: 

• Parameter optimization: adjusting parameters like the fuzziness index (m) with Particle Swarm Optimization 

(PSO). 

• Cluster Validation: evaluating and determining the ideal number of clusters by employing metrics like the 

Davies-Bouldin Index and the Silhouette Coefficient. 
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SALT-Based Adaptive Learning 

Based on time and location within the network, the Spatial-Temporal Adaptive Learning Technique (SALT) dynamically 

learns the changing influence of nodes. This procedure entails: 

• Temporal Decay Functions: Giving more weight to recent interactions to show how they affect the present. 

• Spatial proximity analysis takes into account relational closeness, cluster overlap, and mutual neighbors. 

• Reinforcement Learning: Continuously updating influence scores as the network evolves, allowing for real-time 

responsiveness. 

 

Influence Scoring 

The final influence score is a composite metric that integrates insights from multiple sources: 

• Cluster Centrality: Weighted by fuzzy membership degrees. 

• Temporal Metrics: Captured from SALT's learning of user behavior over time. 

• Structural Centrality: Including traditional metrics like degree, betweenness, and PageRank for baseline 

comparison. 

 
Fig. 1 Methodology 

 

Datasets and Experimental Setup 
 

Datasets 

Two benchmark datasets were used to evaluate the performance of the proposed method for influencer detection and 

social network analysis: 

 

1. Twitter Dataset 

This dataset captures interactions between users on Twitter during major political events. It includes two types of directed 

edges: 

• Retweets 

• Mentions 

The dataset is ideal for analyzing how information spreads across political discourse and identifying key influencers in 

such contexts. 

 

2. Facebook Social Circles Dataset 

This dataset represents anonymized friendship networks from Facebook. It includes: 

• Friendship connections (edges between users) 

• Interaction logs (communication or engagement data) 

 

This dataset is used to study social structures and communication patterns among users in more personal, less public 

networks. 
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Table 1 Dataset Comparison 

Feature Twitter Dataset Facebook Social Circles Dataset 

Number of Nodes ~50,000 ~4,000 

Number of Edges ~220,000 ~88,000 

Network Type Social interaction (Retweets & Mentions) Friendship & user interactions 

Privacy Not specified Anonymized 

Application Domain Political events / Information diffusion Personal social networks / Communication 

Data Types Textual and network links Social ties and interaction logs 

 

Baseline Algorithms 

Sure! Here's a detailed explanation of the baseline algorithms and evaluation metrics mentioned, written clearly in 

English: 

 

3. Baseline Algorithms 

The suggested approach's performance was assessed by contrasting it with a number of well-known algorithms that are 

frequently employed in network analysis and influencer detection: 
Algorithm Description 

Degree Centrality 

calculates the percentage of influencers in the top-K predictions that were correctly 

identified. calculates the proportion of real top influencers that made it into the top-K 

predictions. 

Betweenness Centrality 
determines which nodes in the network serve as bridges. It determines the frequency 

with which a node can be found on the shortest paths between other nodes. 

Eigenvector Centrality 
According to the theory that connections to nodes with high scores contribute more than 

connections to nodes with low scores, assigns have an impact on scores. 

PageRank 
It was first employed by Google and ranks nodes according to the incoming link 

structure. Important neighbors are given more weight. 

Traditional Fuzzy 

Clustering 

enables nodes to be a part of more than one community by grouping them into 

overlapping clusters. aids in comprehending the influence of the community. 

SALT without clustering 
To separate the impact of clustering on performance, a variant of the suggested SALT 

algorithm was employed that lacked the clustering component. 

 

Evaluation Metrics 

Several evaluation metrics were employed in order to fairly evaluate and compare each method's performance: 
Metric Purpose 

Precision@K 
calculates the percentage of influencers in the top-K predictions that were 

correctly identified. 

Recall@K 
calculates the proportion of real top influencers that made it into the top-K 

predictions. 

nDCG (Normalized 

Discounted Cumulative 

Gain) 

gives correctly ranked top positions more weight in order to assess the quality 

of the ranking. 

Runtime calculates the execution time of each algorithm. crucial for extensive networks. 

Scalability assesses the algorithm's performance as the network's size grows. 
 

RESULTS AND DISCUSSION 
 

Performance Metrics 

The following metrics were used to assess and compare the performance of the suggested hybrid approach with a number 

of baseline algorithms: Precision@50, Recall@50, Normalized Discounted Cumulative Gain (nDCG@50), and Runtime 

in seconds. The tables below display the findings. 

 
Table 2 Performance Comparison Across Methods 

Method Precision@50 Recall@50 nDCG@50 Runtime (s) 

Degree Centrality 0.63 0.52 0.59 1.3 

PageRank 0.67 0.58 0.65 2.1 

SALT Only 0.71 0.63 0.70 3.8 

Fuzzy Clustering Only 0.68 0.61 0.66 3.1 

Proposed Method (FC + SALT) 0.79 0.73 0.78 3.6 

                    
Table 3 Relative Improvement Over Degree Centrality 

Method Δ Precision Δ Recall Δ nDCG Δ Runtime 

PageRank +0.04 +0.06 +0.06 +0.8 s 

SALT Only +0.08 +0.11 +0.11 +2.5 s 

Fuzzy Clustering Only +0.05 +0.09 +0.07 +1.8 s 

Proposed Method (FC + SALT) +0.16 +0.21 +0.19 +2.3 s 
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Fig. 2 Comparative Performance of Different Methods (Precision@50, Recall@50, nDCG@50, Runtime) 

 

 
Fig. 3 Relative Improvement Over Degree Centrality Across Methods 

 

Analysis 

When compared to the baseline methods, the suggested hybrid approach—which combines the SALT model with fuzzy 

clustering—performed better on all evaluation metrics. Specifically: 

• Precision@50 increased to 0.79, suggesting that the most significant nodes could be identified with greater 

accuracy. 

• Recall@50 was 0.73, demonstrating the method's ability to retrieve a higher percentage of real influencers. 

• DCG@50 had the highest ranking quality and relevance of the identified influencers, at 0.78. 

• The hybrid approach's runtime (3.6 seconds) was marginally longer than that of simpler algorithms, but it was 

still within a reasonable range, indicating competitive scalability and usefulness for larger networks. 

The temporal adaptability provided by the SALT framework and the incorporation of community-aware clustering 

through fuzzy logic are responsible for the observed improvements. When combined, these  

 

CONCLUSION 

This study combined the Spatial-Temporal Adaptive Learning Technique (SALT) with fuzzy C-Means (FCM) clustering 

to present an optimized hybrid approach for influencer detection in social networks. The suggested approach effectively 

captured the intricate, overlapping, and dynamic character of influence within social networks by fusing fuzzy clustering 

with adaptive learning and reinforcement mechanisms . High-quality community detection was ensured through the use of 

Particle Swarm Optimization (PSO) for parameter tuning and cluster validation metrics such as the Davies-Bouldin Index 

and Silhouette Coefficient. By adding time- and location-aware learning, SALT improved the model's real-time 

responsiveness to changing network behaviors. A more comprehensive and contextually aware measure of influence was 

produced by integrating cluster-based, temporal, and structural features into the final influence scoring . The suggested 

approach performed better than baseline algorithms and conventional centrality measures, according to experimental 

results on the Twitter and Facebook Social Circles datasets. Notably, it maintained a competitive runtime while achieving 

notable gains in Precision@50, Recall@50, and nDCG@50. These improvements demonstrate how well fuzzy logic and 

adaptive learning work together to identify significant nodes in both private and public social networks. In conclusion, 

this hybrid approach is a strong tool for dynamic information diffusion tracking and real-world social network analysis 

since it not only increases influencer detection accuracy but also provides scalability and adaptability. 
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