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Abstract 

Nigeria's security challenges necessitate effective surveillance solutions. This study evaluates EfficientNet-B0, 

EfficientNet-B6, and ResNet-18 for Search and Rescue (SAR) operations using computer vision. We applied L1 

Unstructured and Random Unstructured pruning techniques to assess each model's accuracy and computational 

efficiency. Through preprocessing diverse images and testing pre-trained models, our findings reveal that L1 unstructured 

pruning significantly improves processing times while preserving accuracy. Among the evaluated backbones, 

EfficientNet-B0 with L1 pruning emerged as the most efficient and accurate for SAR applications. This study offers 

valuable insights into selecting optimal computer vision models and pruning strategies for enhanced real-world 

surveillance. 

 

Keywords 

Pruning, Search, Rescue, Computer Vision, EfficientNet, ResNet 

 

INTRODUCTION 

Nigeria’s security architecture must be robust to effectively tackle rising security threats. UAVs equipped with 

sophisticated computer vision capabilities present a promising solution for addressing Nigeria's security challenges. UAV 

technology has found applications across various sectors, including agriculture (L. Wang et al., 2019), courier services 

(Eun et al., 2019), etc. Extensive research has been conducted in object detection (Krizhevsky et al., 2017; Liu et al., 

2020; Szegedy et al., 2015), significantly enhancing UAV capabilities in various fields, particularly surveillance, through 

the implementation of deep convolutional neural networks (DCNNs)(Indolia et al., 2018). These advancements have 

facilitated the development of object detection models such as the YOLO series (Nnadozie, Casaseca-de-la-Higuera, et 

al., 2023; Nnadozie, Iloanusi, et al., 2023), R-CNN series (Girshick et al., 2014; Hsu et al., 2018; S. Ren et al., 2016; 

Zhang et al., 2019) and many others. These models have undergone rigorous testing on diverse image datasets such as 

Pascal VOC (Everingham et al., 2010) and MS COCO (Lin et al., 2014), achieving remarkable success. However, as new 

research progresses and more complex models are developed, they often become computationally demanding, resulting in 

increased processing times and requiring advanced processors. 

Deep Convolutional Neural Network (DCNN) architectures represent a cornerstone in the field of computer 

vision, revolutionizing the way we approach tasks such as image classification, object detection, and image segmentation. 

These architectures, ranging from classic designs like VGG (Nakada et al., 2017) and GoogLeNet (Szegedy et al., 2015) 

to more recent innovations like ResNeXt (Xie et al., 2017) and DenseNet (Huang et al., 2017), have significantly 

advanced the state-of-the-art in visual recognition tasks. Each architecture brings its own unique characteristics and 
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strengths to the table, whether it is the simplicity and depth of VGG, the efficiency and scalability of MobileNet (Howard 

et al., 2017) or the dense connectivity of DenseNet. Moreover, the emergence of neural architecture search techniques has 

led to the discovery of novel architectures like NASNet (Zoph et al., 2018), tailored to specific tasks and datasets. With 

their ability to capture intricate features and patterns from raw pixel data, DCNN architectures continue to drive progress 

in computer vision, enabling breakthroughs in a wide range of applications across various domains. 

 Tan & Le (2019) show the architecture of an EfficientNet in Fig. 2. It offers a compelling solution for reducing 

computational resources and processing time in deep learning tasks. Its innovative approach to compound scaling allows 

for efficient adjustment of the network's width, depth, and resolution, ensuring that the model achieves optimal 

performance with minimal computational overhead. By carefully balancing these scaling factors, EfficientNet 

architectures can achieve state-of-the-art accuracy while using significantly fewer parameters and computations compared 

to other architectures. This reduction in model complexity translates directly into faster inference times, making 

EfficientNet an ideal choice for scenarios where computational resources are limited or where real-time processing is 

essential. Moreover, the lightweight nature of EfficientNet makes it well-suited for deployment on edge devices and 

mobile platforms, enabling efficient and scalable solutions for a wide range of applications, from image classification to 

object detection and beyond. Therefore, EfficientNet emerges as a potent choice as the DCNN architecture for this 

research, particularly in the context of SAR operations where speed is paramount. Thakur & Hemanth (2021) addressed 

the crucial task of pedestrian detection in surveillance applications, recognizing its significance in various tasks such as 

person identification, counting, and tracking. Their research conducts an extensive evaluation of state-of-the-art 

algorithms on the MOT20 dataset (Dendorfer et al., 2020) and a custom dataset recorded using an Unmanned Aerial 

Vehicle (UAV). Three popular object detection models, namely Faster R-CNN, SSD, and YOLO, are tested, with 

YOLOv5 emerging as the top performer with 61% precision and 44% F-measure. The research done by Thakur & 

Hemanth (2021) underscores the importance of tailored object detection solutions for surveillance scenarios.  Of all the 

DNN models for image recognition mentioned by Lyu et al. (2024), the ResNet is the most accurate, with a 3.57% error 

against a human error of 5% on the same image recognition tasks (Alom et al., 2018). This is why ResNet-18 is chosen 

alongside, EfficientNet-B0, and EfficientNet-B6 as suitable models employed in this research. 

This paper builds upon pre-trained object detection models, introduces some adjustments to these object detection 

models and makes comparative analysis. In work done by Liu et al. (2020), whose model architecture is shown in Fig. 1a 

and 1b, two parallel branches were incorporated into the conventional FPN network to capture features that might have 

been missed in the deeper layers. Additionally, a cascade architecture was implemented within the Fast R-CNN stage to 

enhance the model's localization capabilities, leading to improved accuracy in object detection. This method by Liu et al. 

(2020) represents a novel approach distinct from many other solutions (Chen et al., 2019; Dai et al., 2017; Ma et al., 2019; 

Rabbi et al., 2020; Y. Ren et al., 2018; J. Wang et al., 2019; Zhuang et al., 2019) for small object detection, which often 

face challenges in adequately capturing features due to pixel limitations. However, in an attempt to increase the 

robustness of object detection, the model in Liu et al. (2020) increases processing time, which would not be ideal for 

search and rescue (SAR) operations, where rapid response and real-time processing are critical. To address this challenge 

and enhance efficiency, two variants of EfficientNet (EfficientNet-B0 and –B6) along with ResNet (ResNet-18) were 

pruned. By pruning these models, we aim to reduce their complexity while preserving their overall effectiveness, thus 

enabling faster inference without compromising performance. 

In this paper, our primary focus is on reducing processing time, given the urgency of security situations, even at 

the expense of sacrificing a slight degree of accuracy. This implies that the impact of different pruning methods on the 

inference time of various computer vision architectures, specifically EfficientNet-B0, EfficientNet-B6, and ResNet-18 

will be evaluated. 

 
(a) 
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(b) 

Fig. 1 Model architecture in Liu et al. (2020). (a) Architecture of Multi-branch Parallel FPN (b) Architecture of entire framework 

 
Fig. 2 EfficientNet Architecture (Buongiorno et al., 2022) 

 

The main contributions of this paper can be summarized as: 

(a) Model Selection and Preparation:  

 Select pre-trained models of EfficientNet-B0, EfficientNet-B6, and ResNet-18 for comparative analysis. 

 Implement appropriate preprocessing techniques for the input images to ensure consistency across all 

models. 

(b) Implementation of Pruning Methods: 

 Apply L1Unstructured pruning to each of the selected models. 

 Apply Random Unstructured pruning to each of the selected models. 

 Ensure the pruning process is correctly implemented and does not compromise the integrity of the 

models. 

(c) Inference Time Measurement: 

 Measure and record the inference time of each model before any pruning is applied. 

 Measure and record the inference time of each model after L1Unstructured pruning. 

 Measure and record the inference time of each model after Random Unstructured pruning. 

The rest of this paper is organized as follows: Section 2 discusses the research method employed and the experiment 

done. The results of the experiments, comparison and analysis are discussed in section 3. The conclusion and 

recommendations are presented in section 4. 

 

MATERIALS AND METHODS 

This research evaluates the suitability of various computer vision architectures, specifically EfficientNet-B0, 

EfficientNet-B6, and ResNet-18, for surveillance applications in Nigeria, with a focus on Search and Rescue (SAR) 

operations.  The most optimal model in terms of accuracy and computational efficiency was identified after applying 

pruning techniques in order to reduce the models' computational demands. 

 

Model description 

Four random images were downloaded from the internet to serve as the evaluation dataset. These images were chosen 

without regard to specific categories, quality, or resolution consistency, reflecting a practical scenario where diverse 
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image types might be encountered in real-world applications. Each image underwent several preprocessing steps to ensure 

compatibility with the input requirements of the models. This included resizing the images to 128x128 pixels, center-

cropping to 224x224 pixels, converting them to tensors, and normalizing them using ImageNet's standard mean and 

standard deviation values: mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]. 

The study employed pre-trained versions of EfficientNet-B0, EfficientNet-B6, and ResNet-18, obtained from 

popular deep learning frameworks such as PyTorch. These models were used in their original form as baselines for 

comparison, without any modifications to their architecture or weights. The primary performance metrics assessed were 

each model’s top-1 accuracy and inference time, which are crucial for determining their suitability for SAR operations. 

Two pruning techniques were applied to evaluate their effects on model size, computational complexity, and 

inference speed, The L1 Unstructured Pruning and the Random Unstructured Pruning. L1 Unstructured Pruning was 

performed globally across specific layers in all models, targeting 20% of weights with the lowest L1 norm for removal. 

This technique was implemented using PyTorch’s ‘torch.nn.utils.prune’ module to systematically reduce the model’s 

parameter count and enhance computational efficiency. In contrast, Random Unstructured Pruning was applied with the 

same 20% pruning rate, but the weights selected for removal were chosen randomly without considering their magnitude 

or impact on the model. This provided a contrasting approach to L1 Unstructured Pruning by introducing randomness. 

Post-pruning, modifications were made to the output layers of the models, such as the fully connected layer in 

EfficientNet, to adapt to the reduced model size. However, no re-training was conducted after pruning; the models were 

evaluated immediately to observe the effects of pruning on performance metrics. 

The experiments were conducted on a laptop with an Intel Core i3 processor and 12GB RAM, which provided a 

realistic context for computational efficiency in environments with limited resources. The experiments were implemented 

using the PyTorch framework, and inference times for each image were measured using Python’s `time` module. Both 

pruned and unpruned models were tested individually, with processing times recorded before and after pruning to assess 

the computational gains achieved. 

The comparison of results was observational, based on single-run tests for each model variant (pruned and unpruned). 

The primary metrics for comparison included inference time (in seconds) and the top-1 predicted class probability. 

 

RESULTS 

The images used for classification included those of a goldfish (GF), an African chameleon (AC), a great white shark 

(GWS), and a bucket (BKT). These images were selected to represent a diverse range of objects commonly encountered 

in real-world scenarios.The results of these experiments, including accuracy metrics and inference times, are summarized 

in Table 1 to Table 6 of the paper. By analyzing the performance of the pruned and compressed model across different 

image classes, we aimed to evaluate its effectiveness for image classification tasks relevant to SAR operations in Nigeria. 

In the tables below, T1 represents the time taken to make predictions before changes were made to the pre-trained 

models. T2 represents the time taken to make predictions after changes were made. P1 represents the most probable 

object predicted by the model before changes with its probability while P2 represents the most probable object predicted 

by the model after changes with its probability. In this experiment, some predictions made after pruning (P2), specifically 

in experiments 2, 4, 5, and 6, produced outputs that were entirely different from the objects used for testing. The 

acronyms corresponding to these new predictions were defined within each of these experiments.  

 

Experiment 1 

-EfficientNet-B0 

-L1Unstructured 
Table 1 Summary of EfficientNet-B0 L1Unstructured pruned model testing 

Image Size T1(s) T2(s) P1 P2 Actual 

370 x 234 0.2069 0.1689 GF-0.885 GF-0.870 GF 

360 x 257 0.1659 0.1589 AC-0.766 AC-0.826 AC 

1582 x 1186 0.2079 0.1879 GWS-0.581 GWS-0.384 GWS 

474 x 603 0.1659 0.1599 BKT-0.951 BKT-0.954 BKT 
 

Experiment 2 

-EfficientNet-B0 

-Random Unstructured 

 PK – Pick  

 MZ – Maze 

 BIN – Binder  

 CUP – Cup  
Table 2 Summary of EfficientNet-B0 Random Unstructured pruned model testing 

Image Size T1 (s) T2 (s) P1 P2 Actual 

370 x 234 0.1699 0.1649 GF-0.885 PK-0.020 GF 

360 x 257 0.1759 0.1699 AC-0.766 MZ-0.011 AC 

1582 x 1186 0.1939 0.1769 GWS-0.748 BIN-0.022 GWS 

474 x 603 0.1739 0.1649 BKT-0.951 CUP-0.018 BKT 
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Experiment 3 

-EfficientNet-B6 

-L1Unstructured 

 
Table 3 Summary of EfficientNet-B6 L1 Unstructured pruned model testing 

Image Size T1 (s) T2 (s) P1 P2 Actual 

370 x 234 0.7756 0.7746 GF-0.899 GF-0.886 GF 

360 x 257 0.8445 0.8245 AC-0.674 AC-0.643 AC 

1582 x 1186 1.0654 0.8385 GWS-0.694 GWS-0.672 GWS 

474 x 603 0.8675 0.8175 BKT-0.822 BKT-0.798 BKT 

 

Experiment 4 

-EfficientNet-B6 

-Random Unstructured 

 HC – Honey Comb 

 SYG – Syringe 

 SRW – Screw 

 MSK – Match Stick 

 
Table 4 Summary of EfficientNet-B6 Random Unstructured pruned model testing 

Image Size T1 (s) T2 (s) P1 P2 Actual 

370 x 234 0.9205 0.8145 GF-0.899 HC-0.175 GF 

360 x 257 0.8775 0.8305 AC-0.674 SYG-0.067 AC 

1582 x 1186 0.8955 0.8295 GWS-0.694 SRW-0.031 GWS 

474 x 603 0.8495 0.8295 BKT-0.822 MSK-0.048 BKT 

 

Experiment 5 

-ResNet-18 

-L1Unstructured 

 HMH – Hammer Head  

 CCK – Cock  

 OCH – Ostrich 

 
Table 5 Summary of ResNet-18 L1Unstructured pruned model testing 

Image Size T1 (s) T2 (s) P1 P2 Actual 

370 x 234 0.0890 0.1469 GF-1.000 HMH-0.106 GF 

360 x 257 0.1299 0.1339 AC-0.994 CCK-0.107 AC 

1582 x 1186 0.0820 0.1319 GWS-0.983 HMH-0.108 GWS 

474 x 603 0.1039 0.1269 BKT-0.928 OCH-0.112 BKT 

 

Experiment 6 

-ResNet-18 

-Random Unstructured 

 ER – Electric Ray 

 SR – Sting Ray 

 
Table 6 Summary of ResNet-18 Random Unstructured pruned model testing 

Image Size T1 (s) T2 (s) P1 P2 Actual 

370 x 234 0.1110 0.1269 GF-1.000 GWS-0.104 GF 

360 x 257 0.1119 0.1419 AC-0.994 GWS-0.104 AC 

1582 x 1186 0.0899 0.1449 GWS-0.983 ER-0.108 GWS 

474 x 603 2.2687 0.1569 BKT-0.928 SR-0.104 BKT 
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The following graphical representations make comparisons between the experiments 1-6; 

 

 
Fig. 3 Graphical outcome of experiment 1                   Fig. 4 Graphical outcome of experiment 2 

 

 
Fig. 5 Graphical outcome of experiment 3           Fig. 6 Graphical outcome of experiment 4 

 

 
Fig. 7 Graphical outcome of experiment 5        Fig. 8 Graphical outcome of experiment 6 

 

DISCUSSION 
Graphical results from experiments 1-4 show a consistent reduction in processing time after pruning (T2) compared to the 

initial time (T1). However, while both pruning methods improved processing time for the EfficientNet models, it can be 

seen from Table 2 and Table 4 that Random Unstructured pruning method significantly reduces accuracy of prediction. 

For example, in Table 2, the Image with size 370x234 is a Goldfish, however after pruning, the model predicted a Pick 
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with a 2% probability.  This trend of wrong predictions continued throughout the experiment and can also be seen for 

experiment 4. 

For the pruned ResNet-18 models, neither processing time nor accuracy were improved. This is evident in 

experiments 5 and 6. Therefore, none of the pruning methods proposed in this paper are useful for the ResNet models. 

L1 Unstructured pruning significantly enhances the performance of both EfficientNet-B0 and EfficientNet-B6 as shown 

in experiments 1 and 3. Although Random Unstructured and L1 Unstructured pruning methods improved the processing 

time for the EfficientNet models, only L1 Unstructured maintained accurate predictions after pruning. Therefore, we 

conclude that among the pruning techniques applied to EfficientNet and ResNet-18, L1 Unstructured on EfficientNet is 

the most effective in terms of performance and accuracy. 

 

CONCLUSION 

Overall, this research provides a structured approach to evaluating the performance of different computer vision 

backbones and pruning techniques for surveillance applications in Nigeria. By balancing model size, computational 

efficiency, and accuracy, this study aims to offer valuable insights for selecting the most suitable model architecture and 

pruning strategy for real-world SAR operations. L1 unstructured pruning on EfficientNet architectures significantly 

reduces processing time, making it highly suitable for object detection in Search and Rescue (SAR) operations. This 

pruning technique maintains the high accuracy of the model while streamlining its computational efficiency, ensuring that 

object detection tasks are performed swiftly and reliably. The ability to balance speed with precision is essential in SAR 

scenarios, where timely and accurate detection can be life-saving. Therefore, adopting L1 unstructured pruning for 

EfficientNet models can greatly enhance the effectiveness of SAR operations.  
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