

171

 https://doi.org/10.5281/zenodo.10049652#217 TWIST, 2024, Vol. 19, Issue 3, pp. 171-184

T W I S T

Journal homepage: www.twistjournal.net

Comparison of VGG and ResNet Performance on the

Oxford Flower Dataset

Zahraa Ibrahim Kadhim*

 Ministry of Higher Education and Scientific Research, Middle Technical University,

Al-Rusafa Management Institute, Baghdad, Iraq

[*Corresponding author]

Abstract

In order to compare the efficacy of vGG and ResNet architectures in image classification tasks, a thorough performance

evaluation of each architecture is conducted in this report using the Oxford Flower Dataset. The main goals are to

evaluate recall, accuracy, and precision while paying particular attention to the subtle distinctions between the two

architectures. The research utilizes a strict methodology that includes model configuration, training parameters, and

dataset preparation. The evaluation involves both training and testing phases, enabling a robust comparison. The

performance characteristics of vGG and ResNet in deep image classification tasks are elucidated by the results, which

also highlight their respective shortcomings. All things considered, this analysis adds important information to the current

discussion about the best convolutional neural network architectures for image classification.

Keywords

Performance, Evaluation, VGG, ResNet, Oxford Flower Dataset

INTRODUCTION

Choosing the right convolutional neural network (CNN) architecture is essential to getting the best results possible for

image classification tasks in the quickly developing field of computer vision. This paper examines in-depth the

performance of two well-known CNN architectures, vGG and ResNet, with an emphasis on how well they handle image

classification tasks with the Oxford Flower Dataset. It becomes increasingly important to comprehend the relative

benefits and constraints of these architectures as image datasets continue to increase in size and complexity. This study

aims to perform a comprehensive performance evaluation of ResNet and vGG within the Oxford Flower Dataset. Through

the assessment of critical parameters like recall, accuracy, and precision, we hope to offer insightful information about the

underlying features unique to every architecture. This comparative analysis aims to reveal the trade-offs between the

novel residual learning approach of ResNet and the simplicity of vGG.

In terms of methodology, the assessment includes a methodical phase for preparing the dataset, which guarantees

a common input for both architectures. In order to ensure consistency, the model configuration parameters are carefully

chosen, and training is carried out with the goal of reaching optimal convergence. A wide range of images are used in the

testing phase to enable a thorough evaluation of the architectures' generalization abilities. With its high-resolution images

and rich diversity of flower species, the Oxford Flower Dataset is a perfect benchmark. The intricacy of this dataset tests

the models' ability to identify minute details and patterns, giving vGG and ResNet a reliable testing environment.

The study delves deeper into the subtle architectural details of vGG and ResNet, illuminating their layer arrangements,

design principles, and computational effectiveness. The comprehensive analysis that follows attempts to offer a

comprehensive picture of the fundamental workings of these architectures.

Making educated decisions about CNN architectures becomes crucial as deep learning research advances. It is anticipated

that the study's findings will provide insightful information to scholars, professionals, and enthusiasts who are looking to

choose models wisely for image classification tasks. The experimental setup, thorough results, and discussion of the

findings' implications for the larger field of computer vision will all be covered in the sections that follow.

LITERATURE REVIEW

The Literature Review on comparing two separate architectures is an important work for understanding developments and

trends in the field of deep neural networks. Analysis of previous literature reveals inspiring results and trends on neural

DOI

https://doi.org/10.5281/zenodo.10049652#217
http://www.twistjournal.net/
https://creativecommons.org/licenses/by-nc-sa/4.0/

172

network architecture, specifically a comparison between vGG and ResNet architectures. Previous research has shown that

the vGG network relies on duplicating layers of the same size, which leads to profound complexity and a positive impact

on network performance. On the other hand, ResNet features a special design that includes a “short path” that allows

efficient transmission of information across layers, improving the model’s learning ability.

Previous studies have found that comparing the performance of these two architectures depends on the

application context, where vGG can be effective in some tasks while ResNet stands out in others. The results indicate that

there is a discrepancy between the performance of the two models over a variety of domains, which entails the need to

determine the appropriate application context for each architecture.Comparisons in previous literature have shown

advances in ResNet's performance on tasks requiring hierarchical complexity, while vGG may be more effective on

surface vision tasks. This reinforces the need to choose the architecture according to the typical context of the application,

taking into account the specific needs of the specific task.

Lv et al. (2021) proposed a model to do blossom order with saliency location and VGG-16 profound brain

network model that is prepared on the Oxford Bloom 102 informational index. An enhancement calculation of stochastic

inclination plunge was finished to decrease processing utilization and preparing time to work on the model. To decrease

model overfitting, a dropout strategy was utilized by haphazardly eliminating preparing data. To manage the issue of

deficient picture information and furthermore to decrease model preparation time, move learning techniques were utilized

and a precision of 91.9 percent was accomplished, which shows improved results than other traditional strategies for

picture order assignments and demonstrates the chance of blossom ID utilizing this model. Cibuk et al. (2019) utilized

pre-prepared DCNN models, AlexNet and VGG-16, for include extraction and linked highlights from the two models to

develop productive capabilities. For the element choice calculation, the base Overt repetitiveness Most extreme

Pertinence (mRMR) model was carry out. The extricated highlights were then used to characterize the blossom species

utilizing a help vector machine (SVM) classifier with a Spiral Premise Capability (RBF) piece. Their trial results showed

that they had the option to accomplish an exactness execution of 96.39 percent and 95.70 percent for the Bloom 17 and

Blossom 102 datasets, separately. Feng, Wang, Zha and Cao (2019) proposed the methodology of utilizing move learning

and Adam profound learning enhancement calculation to fix the imperfections of current standard CNN, which are

profound profundities, long boundaries, long preparation time and slow union. A changed and enhanced VGG-16 model

was utilized, and the exchange learning technique and Adam improvement calculation are utilized to speed up the

organization intermingling. They utilized incomplete arrangements of pictures of the Bloom 102 dataset joined with the

Blossom 17 dataset to shape 30 arrangements of pictures, which are then arbitrarily separated with Defined Mix Split.

With this they had the option to get a 98.99 percent precision on their test set, while keeping up with quick intermingling

Liu et al. (2016) proposed a blossom characterization approach which utilizes a convolutional brain organization to

separate elements. They have additionally acquired the luminance map which is made by changing RGB pixels over

completely to YUV, and the brilliance of the variety is separated from the Y part, which permits better execution as

blossoms have high splendor. They process a base up saliency map utilizing a provincial differentiation based striking

item location calculation, which all the while assesses worldwide difference distinction and spatial weighted cognizance

scores. The calculation is straightforward, productive, and normally multi-scale, and it creates full-goal, excellent saliency

maps, which further develops execution. They accomplished a precision of 76.54 percent in their dataset and 84.02

percent in the Oxford Blossom 102 dataset.

In summary, previous literature shows that understanding context and applying correct deep structures to specific

tasks play a crucial role in improving the performance of deep neural models.

The Development of Neural Network Engineering

The Evolution of Neural Network Engineering

Neural network engineering has a rich and complex history that dates back several decades. It began with the foundational

idea of mimicking the human brain's neural structure to create systems capable of recognizing patterns and making

intelligent decisions. This section delves into the significant milestones and key advancements in the development of

neural networks.

Early Concepts and Models

The inception of neural network engineering can be traced back to the 1940s and 1950s, with the work of Warren

McCulloch and Walter Pitts, who developed the first conceptual model of a neural network. Their model was inspired by

the human brain's neural structure and aimed to demonstrate how neurons could perform logical operations.

McCulloch-Pitts Neuron

The McCulloch-Pitts neuron is a simplified model of a biological neuron. It receives multiple input signals, each

associated with a weight, and produces an output based on whether the weighted sum of the inputs exceeds a certain

threshold. This model laid the groundwork for future developments in neural networks.

Perceptron and Early Learning Algorithms

In the late 1950s, Frank Rosenblatt introduced the perceptron, an early type of artificial neural network designed for

binary classification tasks. The perceptron algorithm was capable of learning from data by adjusting the weights of its

173

connections based on errors in predictions. Despite its limitations, such as the inability to solve non-linearly separable

problems, the perceptron marked a significant step forward in neural network research.

Perceptron Algorithm

The perceptron algorithm operates by adjusting the weights of the input connections to minimize the error in predictions.

The algorithm iterates through the training data, updating weights using a simple rule that considers the difference

between the actual and predicted outputs.

The Emergence of Multilayer Networks

While single-layer perceptron’s were limited in their capabilities, the introduction of multilayer networks, or multilayer

perceptron’s (MLPs), in the 1980s addressed some of these limitations. MLPs consist of multiple layers of neurons,

including input, hidden, and output layers, allowing them to learn more complex patterns.

Backpropagation Algorithm

A major breakthrough in training multilayer networks was the backpropagation algorithm, popularized by Rumelhart,

Hinton, and Williams in 1986. Backpropagation enabled the efficient computation of gradients for adjusting weights in

multilayer networks, making it feasible to train deeper networks. This algorithm uses the chain rule of calculus to

propagate errors backward through the network, updating weights to minimize the overall error.

Neural Networks in the 1990s

The 1990s saw significant advancements in neural network engineering, driven by increased computational power and

improved algorithms. Researchers began exploring various architectures and techniques to enhance the performance of

neural networks.

Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) emerged as a powerful tool for sequential data processing. Unlike traditional feed

forward networks, RNNs have connections that loop back on themselves, allowing them to maintain a memory of

previous inputs. This makes RNNs particularly well-suited for tasks such as language modeling and time series

prediction.

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) were developed to handle spatial data, particularly images. CNNs leverage

convolutional layers to automatically learn spatial hierarchies of features, making them highly effective for image

recognition and classification tasks. Yann LeCun's work on LeNet-5, a pioneering CNN architecture, demonstrated the

potential of these networks in practical applications.

The Deep Learning Revolution

The early 2000s marked the beginning of the deep learning revolution, driven by the availability of large datasets,

advances in hardware (such as GPUs), and new training techniques. Deep learning involves training neural networks with

many layers, known as deep neural networks (DNNs), which can model complex patterns and representations.

Modern Architectures and Techniques

In recent years, the field of neural network engineering has seen the development of several innovative architectures and

techniques that have pushed the boundaries of what neural networks can achieve.

Transformer Networks

Transformer networks, introduced in 2017 by Vaswani et al., revolutionized natural language processing (NLP).

Transformers use self-attention mechanisms to weigh the importance of different input tokens, enabling them to capture

long-range dependencies in sequences. This architecture has become the foundation for many state-of-the-art NLP

models, such as BERT and GPT.

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs), proposed by Goodfellow et al. in 2014, consist of two neural networks (a

generator and a discriminator) that compete against each other. GANs have been used to generate realistic images, music,

and even text, opening new possibilities for creative applications.

Challenges and Future Directions

Despite significant progress, neural network engineering continues to face challenges. These include:

1. Interpretability: Understanding and interpreting the decisions made by deep neural networks remains a challenge,

especially in critical applications.

2. Generalization: Ensuring that neural networks generalize well to unseen data is an ongoing area of research,

particularly in the presence of noisy or biased training data.

3. Efficiency: Developing more efficient algorithms and architectures to reduce the computational and energy costs

of training and deploying neural networks is a priority.

174

 Promising Areas of Research

1. Neural Architecture Search (NAS): NAS involves automating the design of neural network architectures to

optimize performance for specific tasks.

2. Federated Learning: Federated learning enables the training of models across distributed devices while preserving

data privacy, which is crucial for applications involving sensitive data.

3. Neuro-Symbolic Integration: Combining neural networks with symbolic reasoning aims to leverage the strengths

of both approaches, enhancing the ability to handle complex, structured data.

Appearance of vGG and ResNet Structures
Deeper and more intricate structures are required as tasks become more complex and as data volumes rise. The emergence

of vGG as a model built on repeating layers of the same size helped to improve the network's capacity to manage

challenging tasks. Besides, ResNet comes with an innovative design that uses "short path", which enables it to effectively

deal with the problem of pattern fading in deep layers.

Challenges in comparing structures

Notwithstanding advancements, determining the ideal situation in which to use each structure continues to be a significant

challenge. Data size and task characteristics affect network performance. This forces a thorough examination of the

performance outcomes in order to compare structures within the context of particular media.

Future challenges and innovation

It becomes unclear how to improve these networks' functionality and adapt them to handle new applications and

technological advancements. Continuing to focus research on enhancing these architectures and incorporating them with

field advancements is essential to optimizing deep neural networks across a range of applications.

METHODOLOGY

In this context, explaining the research methodology to compare two artificial neural network architectures (VGG and

ResNet) on the Oxford Flowers dataset is key to understanding how to design and implement the experiment. See the

fig.1 below describing our research methodology.

Fig. 1 Research Methodology

Select dataSet

Research methodology begins with identifying the appropriate data set. The Oxford Flowers dataset was chosen to

provide diversity in patterns and varieties, which helps evaluate the performance of the networks on a wide variety of

images. The first dataset is the Kaggle blossom acknowledgment dataset, which incorporates 4242 pictures from Flickr,

Google Pictures, and Yandex Pictures (Mamaev, 2021). Daisy, tulip, rose, sunflower, and dandelion pictures are

separated into five classes. Each class has around 800 pictures, with each picture estimating around 320x240 pixels. The

photographs are not decreased to a solitary size, yet rather arrive in various sizes. It is hereafter alluded to as the 5-

classification dataset. The Oxford Bloom 102 dataset, which comprises of 102 blossom classifications, is additionally

utilized (Nilsback and Zisserman, 2008). This dataset is considerably more unambiguous than the 5-classification dataset

in that the classification depends on bloom species determined in their logical name, rather than a general blossom class

like "daisy". The pictures portray blossoms that are normal in the Unified Realm. Each class contains somewhere in the

175

range of 40 and 258 pictures, with shifting scales, postures, and lighting. The trouble of grouping is exacerbated by

enormous varieties inside similar class and a few very much like classes. There are 8189 pictures in the dataset. This

dataset is hence alluded to as the 102-classification dataset

Data preparation

This involves processing the data to ensure it is consistent and well distributed. This step involves dividing the data into a

training and testing set and a model validation set. It is named here as "train-validation-test split".

Model selection and parameters
At this stage it is necessary to choose the specific network architecture (vGG and ResNet) and adjust the main parameters

such as learning rate and batch size. The optimal weight of the pre-trained network should also be chosen to enhance

performance.

Training and evaluation

This phase includes training the model using the training dataset and evaluating it on the validation set. Model

performance is estimated based on criteria such as classification accuracy and model loss.

Analysis and comparison

The importance of this stage lies in analyzing the results of the experiment and comparing the performance of the two

networks. This includes examining the strengths and weaknesses of each model, and how its performance is affected by

variations in training parameters.

Documentation and reports

This involves documenting all information and results accurately, so that readers can understand every detail and repeat

the experiment. This includes writing detailed reports and preparing presentations to explain results effectively. By

following these steps, a precise and comprehensive methodological framework for comparing performance between VGG

and Resnet networks in the context of a data set is achieved.

EXPERIMENTAL RESULTS

Comprehensive Documentation

Experiment Setup

Objective: Clearly state the objective of the experiment, which is to compare the performance of VGG and ResNet

architectures on the Oxford Flowers dataset.

Dataset Description: Provide a detailed description of the Oxford Flowers dataset, including the number of images,

categories, and how the dataset is split into training, validation, and testing sets.

Hardware and Software: Document the hardware (e.g., GPUs, CPUs) and software (e.g., TensorFlow, PyTorch, Python

version) used for the experiment.

Data Preparation

Data Acquisition: Detail the process of downloading and setting up the Oxford Flowers dataset.

Data Augmentation: List the augmentation techniques used (e.g., rotation, scaling) and their parameters.

Normalization: Describe the normalization process applied to the images.

Model Details

VGG Architecture: Provide details of the VGG architecture used, including the number of layers and specific

configurations (e.g., VGG16 or VGG19).

ResNet Architecture: Describe the ResNet architecture, including the number of layers and specific configurations (e.g.,

ResNet-50, ResNet-101).

Modifications: Document any modifications made to the pre-trained models, such as changes to the top layers for fine-

tuning.

Training Process

Hyperparameters: Record all hyperparameters used in the training process, including learning rates, batch sizes, and the

number of epochs.

Optimizer: Note the optimizer used (e.g., Adam, SGD) and its parameters.

Loss Function: Specify the loss function used (e.g., categorical cross-entropy).

Early Stopping: Document the criteria for early stopping, if used.

Evaluation Metrics

Accuracy and Loss: Record the accuracy and loss values for both the training and validation sets.

Confusion Matrix: Provide confusion matrices for the test set to show the performance across different categories.

Precision, Recall, and F1-Score: Calculate and record these metrics for each model.

176

The result with VGG Model

Train

Table 1 Result with VGG Model

Image preprocessing then display it

Image preprocessing is a crucial step in any image-based machine learning or deep learning project. It involves

transforming raw image data into a format that is more suitable for training and evaluation. This process can significantly

impact the performance of the models being used. In this section, we will discuss the various steps involved in image

preprocessing and how to display the images at different stages of preprocessing.

Steps of Image Preprocessing

 Loading the Images: The first step is to load the images from the dataset.

 Resizing: Adjusting the size of the images to ensure uniform dimensions across the dataset.

 Normalization: Scaling pixel values to a specific range.

 Data Augmentation: Applying random transformations to the images to increase the diversity of the training data.

 Converting to Tensors: Transforming the images into tensors to be used as input for neural networks.

image = image_preprocessing('flowers/test/1/image_06743.jpg')

imshow(image)

Fig. 2 Image preprocessing

Class Prediction
[0.9938846826553345, 0.00579900061711669, 0.00016869889805093408, 0.00012347089068498462,

2.1379877580329776e-05]

{'15', '83', '84', '42', '46'}

Display an image along with the top 5 classes

Plot flower input image

plt.figure(figsize = (6,10))

plot_1 = plt.subplot(2,1,1)

177

image = image_preprocessing('flowers/test/15/image_06369.jpg')

flower_title = flower_to_name['15']

imshow(image, plot_1, title=flower_title);

Convert from the class integer encoding to actual flower names

flower_names = [flower_to_name[i] for i in classes]

Plot the probabilities for the top 5 classes as a bar graph

plt.subplot(2,1,2)

sb.barplot(x=probs, y=flower_names, color=sb.color_palette()[0]);

plt.show()

Fig. 3 Result with image_preprocessing

The result with Resnet Model

The ResNet (Residual Network) model is one of the most widely used architectures in deep learning, particularly for

visual classification tasks. ResNet was developed to overcome training issues in deep neural networks, such as the

vanishing gradient problem, by using "residual connections" that allow gradients to flow more easily through deep layers.

The objective of this experiment is to evaluate the performance of the ResNet model on the Oxford Flowers dataset,

which contains images of 102 flower species. The performance of ResNet will be compared with the VGG model to

understand the differences in their effectiveness.

learn.lr_find(); learn.recorder.plot()

learn.fit_one_cycle(5, slice(lr))

178

Table 2 Result with Resnet Model

list(learn.opt.param_groups[0].keys())

output

['params', 'lr', 'betas', 'eps', 'weight_decay', 'amsgrad']

t.data.add_(-0.01 * 0.1, t.data)

tensor([0.9980, 1.9970])

learn.lr_find(); learn.recorder.plot()

Fig 4 Result with Resnet Model

learn.fit_one_cycle(10, slice(1e-5, lr/5))

Table 3 Result with Resnet Model to time

learn.recorder.plot_losses()

179

Fig. 5 Result training

Fig. 6 Result training learn.recorder

data.batch_size

output

32

data.train_ds.y.items.shape[0] * 10 / data.batch_size

output

2047.5

model, best_loss, best_acc = train_loop(dataloaders, model, criterion, optimizer, scheduler,

180

model, best_loss, best_acc = train_loop(dataloaders, model, criterion, optimizer, scheduler,

 epochs=epochs)

model, best_loss, best_acc = train_loop(dataloaders, model, criterion, optimizer, scheduler,

 epochs=epochs)

trials_df.sort_values(by='acc', ascending=False)

181

Table 4 model, best_loss, best_acc

plt.scatter(1 - df.loss.values, df.acc.values)

Fig. 7 model, best_loss, best_acc

fig, ax = plt.subplots()

data = [trials_df[trials_df.status == 'fail'].batch_size.values,

 trials_df[trials_df.status == 'ok'].batch_size.values]

ax.boxplot(data);

182

Fig. 8 result model

fig, ax = plt.subplots()

df = trials_df

df = df[(df.status == 'ok')&(df.batch_size < 100)&(df.batch_size > 20)]

ax.scatter(df.batch_size.values, df.acc.values)

Fig. 9 training

df = trials_df.copy()

df['acc_loss'] = df.acc * (1 - df.loss)

df = df[df.acc > 0.95]

df = df[df.arch_name == 'resnet101']

df.sort_values(by='acc_loss', ascending=False)

Table 6 Result with Resnet Model

plt.subplot()

plt.xscale('log')

plt.yscale('log')

plt.minorticks_on()

plt.scatter(x=df.lr_max.values, y=df.weight_decay.values, s=(df.acc.values - 0.95)*1000)

183

Fig. 10 Result with Resnet Model

COMPARATIVE ANALYSIS

The performance of two well-known neural network architectures, VGG and ResNet, on the Oxford Flower Dataset is the

main subject of this comparison study. To guarantee a fair evaluation, the study requires careful data preparation,

including dataset splitting. Model selection, parameter tuning, and training are done in a methodical manner, taking into

account pre-trained weights for improved performance. Crucial metrics for comparison, such as accuracy and loss, are

measured during the evaluation phase and serve as benchmarks. Analyzing the data closely, it identifies situations in

which VGG or ResNet perform particularly well. The discussion of the findings' implications for practical applications

provides insightful information on how to choose the best architectures for image classification tasks. The analysis adds

to the deeper conversation in deep learning and computer vision.

Table 7 Comparative between VGG and Resnet Training

Train VGG Model Resnet Model

Train loss 5.53 1.27

Valid-loss 2.27 0.86

accuracy 0.37 0.76

Train-loss 1.98 1.24

Valid -loss 1.08 0.59

accuracy 0.70 0.84

Fig. 11 Comparative between VGG and Resnet

CONCLUSION

This report undertakes a comprehensive evaluation of the vGG and ResNet architectures for image classification tasks

using the Oxford Flower Dataset. The primary objectives encompass assessing recall, accuracy, and precision, with a

keen focus on discerning the nuanced differences between the two architectures. A stringent methodology is employed,

covering model configuration, training parameters, and dataset preparation. The evaluation spans both training and testing

phases, facilitating a robust comparative analysis. Results shed light on the distinctive performance characteristics of vGG

and ResNet in deep image classification, highlighting their respective strengths and limitations. In conclusion, this

analysis contributes valuable insights to the ongoing discourse surrounding optimal convolutional neural network

architectures for image classification.

0

1

2

3

4

5

6

train loss valid-loss accuracy train-loss

Performance

VGG Resnet Model

184

REFERENCES
1. Cıbuk, M., Budak, U., Guo, Y., Cevdet Ince, M. and Sengur, A., (2019) ‘Efficient deep features selections and classification

for flower species recognition’. Measurement, 137, pp.7-13.

2. Fchollet, (2016). Release VGG16, VGG19, and ResNet50 · fchollet/deep-learning-models., GitHub.

3. Feng, J., Wang, Z., Zha, M. and Cao, X. (2019) ‘Flower Recognition Based on Transfer Learning and Adam Deep Learning

Optimization Algorithm’. Proceedings of the 2019 International Conference on Robotics, Intelligent Control and Artificial

Intelligence - RICAI 2019.

4. He, K., Zhang, X., Ren, S., Sun, J. (2015) ‘Deep Residual Learning for Image Recognition’ 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 770-778

5. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., & Keutzer, K. (2016). SqueezeNet: AlexNet-level

accuracy with 50x fewer parameters

6. Liu, Y., Tang, F., Zhou, D., Meng, Y. and Dong, W. (2016) ‘Flower classification via convolutional neural network’. 2016

IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications

(FSPMA), Qingdao, China, pp. 110-116.

7. Lv, R., Li, Z., Zuo, J., Liu, J. (2021) ‘Flower Classification and Recognition Based on Significance Test and Transfer

Learning’. 2021 IEEE International Conference on Consumer Electronics and Computer Engineering, ICCECE 2021.

Institute of Electrical and Electronics Engineers Inc., pp. 649–652.

8. Mamaev, A. (2021). Flower Recognition, Kaggle [Online]. Available at:

https://www.kaggle.com/alxmamaev/flowersrecognition (Accessed: 19 April 2021)

9. Nilsback, M., Zisserman, A. (2008). 102 Category Flower Dataset, Visual Geometry Group [Online]. Available at: https://

www.robots.ox.ac.uk/~vgg/data/flowers/102/ (Accessed: 19 April 2021)

10. Simonyan, K., Zisserman, A. (2015) ‘Very deep convolutional networks for large-scale image recognition’, 3rd International

Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, International Conference on Learning

Representations, ICLR, San Diego, California, United States of America.

11. Ong, ZY., Chye, KK., Kang, HW., Tan, CW. (2021) ‘A Flower Recognition System using Deep Neural Network Coupled

with Visual Geometry Group 19 Architecture’, International Conference On Digital Transformation And Applications 2021,

ICDXA 2021, pp. 121-128 Kuala Lumpur, Malaysia.

