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Abstract 

In this study we see, how are apply fractional calculus to demonstrate a relationship between the stable distributions? To 

do so, it is necessary to first formulate the appropriate fractional diffusion equations. Standard diffusion equations can be 

extended into what are called fractional diffusion equations. This enlargement can be accomplished by considering either 

a time or a space derivative on a fractional scale. The fractional derivative is used to extend the reach of standard 

diffusion equations in this article. Obtain some analytic-numerical approximations for the PDF of the univariate stable 

distributions by employing some analytic-numerical approaches, such as the homotopy perturbation method, the Adomian 

decomposition method, and the variational iteration method, which are employed to solve partial differential equations 

(PDEs) and perform stability analysis. By using fractional calculus, one can precisely manage a wide variety of 

mathematical models. It is applied to a wide variety of problems, including those involving turbulence, pollution, 

population growth and spread, landscape development, medical imaging, and complex systems. 
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INTRODUCTION 

In this paper looks, how fractional calculus can be used in economics, finance, and modeling. We start with a short 

introduction to the field of fractional calculus, which covers two key points right away: first, the fractional paradigm is 

important in science, especially in the fields of finance and economics; and second, the fractional paradigm is important 

for calculus and random processes.  

Calculus with fractional denominators extends the capabilities of classical calculus. The ability to write 

differential equations that relate variables and their rates of change has made calculus a crucial tool for modern science. 

Equations with a difference started the contemporary era of quantitative theory in science. Differential equations are 

especially useful because they simplify the description of physical phenomena at the local level, such as how heat travels 

along a rod after being applied to one end. Locally, the heat equation is relatively simple: at any point on the rod, the time 

derivative of the temperature is proportional to the second space derivative, even if the actual description of the 

propagation of temperature can be quite complex depending on the source of heat. 

This is why differential equations work so well in science: things simplify themselves locally, and it's possible to 

come up with a general law that is easy to understand and very effective.  

Yet, not all problems are confined to a single location. There are a lot of challenges of a global nature in the fields 

of physics, engineering, and economics. Take, for instance, variational problems, the aim of which is to maximize the 

value of a function—that is, to locate the point at which the function performs at its best in a domain consisting of 

functions. The translation of variational issues into integral or differential equations has been a significant achievement in 

mathematics. This is despite the fact that variational problems do not involve local variables. In spite of this, the 

formalism of fractional calculus is a very helpful instrument for the resolution of issues involving variation. 
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For instance, Abel's integral equation solves the tautochrone problem. Fractional derivatives can solve Abel integral 

equations. Several articles written in the last few years have shown that there is a strong link between the calculus of 

variations and the fractional calculus (seeGorenflo et al. [7] and Mainardi et al. [14]).  

The calculus of variations is one of the most important ways to use math in science and engineering. For example, 

classical dynamics can be described in terms of the task of maximizing Hamiltonian functionals. This can be done by 

using the term "variational." Variational ideas provide the foundation of control theory. Formulating and resolving issues 

involving variation need the application of fractional calculus. Fractional calculus is intriguing because it has a non-local 

feature (in science and engineering). 

In financial risk management, probability distribution functions with "fat tails" are common, and fractional 

calculus can be used to figure them out. We will see that the solutions of certain fractional partial differential equations 

have stable, fat-tailed distributions. Unfortunately, there are no closed formulas that can adequately explain these 

distributions. There must be approximations made at the numerical level. Fat-tailed stable distributions can be computed 

numerically with the help of fractional calculus. 

 
Fig. 1 Fat-tail 

 

Pricing financial contracts like options has been shown to benefit a lot from the solution of fractional partial differential 

equations. But the traditional Black-Scholes equations (see Black and Scholes [1]) don't work well in many real-world 

situations. 

Stochastic processes, which are fractional like mathematics, are used in banking and economics to simulate 

volatility, interest rates, and high-frequency data. 

Several papers on heavy tail distributions during the 1960s, and there have been many more since then. These 

studies support the idea that the heavy tail is a characteristic about financial time series. When it comes to empirical 

samples, the variance doesn't change based on how big the sample is, but the variance for stable distributions is always 

the same. Diffusion equations are extended to fractional order in one application of fractional calculus to establish a 

relationship between stable and tempered stable distributions.  

 
Fig. 2 Heavy Tailed 

 

We cover the ideas and properties of the most well-known definitions of fractional calculus as well as the definitions that 

will be utilized in this study because there are different ways to extend ordinary calculus to fractional calculus. 

Some important definitions for fractional calculus are the Riemann-Liouville fractional derivative, Caputo fractional 

derivative, Gr�̈�nwald-Letnikov fractional derivative, and fractional derivative based on the Fourier transform are 

discussed (see Samko et al. [19], Kilbas et al. [11], Podlubny [17], Hashemiparast and Fallahgoul [8-9],Fallahgoul et al. 

[5-6]). 

 

STABLE DISTRIBUTION 
We See in this section to use of fractional calculus to build a relationship with the stable distributions. The fundamental 

solution of the appropriate fractional diffusion equations, which are defined to achieve this, provides the PDF for the 

univariate stable distributions. Extensions of standard diffusion equations are fractional diffusion equations. 

Consideration of a fractional derivative in either time or space can be used to carry out this extension. In this study,apply 

the fractional derivative in space to extend standard diffusion equations. For the second part, obtain some analytic-
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numerical approximations for the PDF of the univariate stable distributions by employing some analytic-numerical 

approaches, such as the homotopy perturbation method, the Adomian decomposition method, and the variational iteration 

method, which are used for solving partial differential equations (PDEs) and analyzing of stability. 

Now, next is demonstrate the relationship between the univariate stable distribution and fractional calculus. The 

PDF of the univariate stable distributions is found by various authors, whose fundamental solutions are described in 

further detail (see Fallahgoul et al. [4-5]). 

We consider the following equation, illustrated by Fallahgoul et al. [4-5].  
∂𝑢

∂𝑡
= −

1 + 𝛽

2𝑐

∂𝛼

∂𝑥𝛼
𝑢(𝑥, 𝑡) −

1 − 𝛽

2𝑐

∂𝛼

∂(−𝑥)𝛼
𝑢(𝑥, 𝑡) + 𝜇

∂

∂𝑥
𝑢(𝑥, 𝑡),              (1) 

equation (1) is called a  fractional diffusion PDE, where 0 < 𝛼 ≤ 2, 𝛼 ≠ 1, −1 ≤ 𝛽 ≤ 1,  −∞ < 𝜇 < ∞,  𝑐 = cos 
𝛼𝜋

2
 and 

𝑠 = sin 
𝛼𝜋

2
. Assume to be𝐻(𝜔, 𝑡) be the Fourier transform of 𝑢(𝑥, 𝑡) with respect to 𝑡, can write an equation (1) in form 

of an initial value problem 
∂𝐻

∂𝑡
= −

1 + 𝛽

2𝑐
(𝑖𝜔)𝛼𝐻 −

1 − 𝛽

2𝑐
(−𝑖𝜔)𝛼𝐻 + (𝑖𝜇𝜔)𝐻.                                   (2) 

 Assume𝑢(𝑥, 0) = 𝛿(𝑥), is an initial value,  then 𝐻(𝜔, 0) = 1. So the solution of an equation (2) can be expressed as 

𝐻(𝜔, 𝑡) = exp {−
1 + 𝛽

2𝑐
(𝑖𝜔)𝛼𝑡 −

1 − 𝛽

2𝑐
(−𝑖𝜔)𝛼𝑡 + (𝑖𝜇𝜔)}.                     (3)  

Equation (3) of the fractional PDE is equivalent to equation (1) 
∂𝑢

∂𝑡
= −

𝛽

𝑐

∂𝛼

∂𝑥𝛼
+ (1 − 𝛽)

∂𝛼

∂(−𝑥)𝛼
𝑢(𝑥, 𝑡) + 𝜇

∂

∂𝑥
𝑢(𝑥, 𝑡),                                 (4) 

where (𝑥, 0) = 𝑢0(𝑥), −∞ < 𝑥 < ∞ , 𝑡 > 0. So we can find the Fourier transform from the fundamental solution of (4), 

written as 

𝐻(𝜔, 𝑡) = exp {−|𝜔|𝛼𝑡 − 𝑖𝛽sign (𝜔)tan 
𝛼𝜋

2
|𝜔|𝛼𝑡 + 𝑖𝜇𝜔𝑡}.                     (5) 

At 𝛼 ≠ 1, the univariate stable distribution's characteristic function (CF) is identical to an equation (5). The resulting PDF 

for the univariate normal distribution is u(x,t) (i.e., 𝑆𝛼 (𝑡
1

𝛼, 𝛽, 𝜇𝑡))(see [4-5]). 

Finally, obtain different analytic-numerical approximations for the PDF of the univariate stable distribution using 

techniques like the homotopy perturbation method (HPM), the Adomian decomposition method (ADM), and the 

variational iteration method (VIM), (see Fallahgoul et al. [4-5], He [10]). Using a finite difference method or a finite 

element method can improve the approximations' precision. The issue persists and merits more research. 

 

Homotopy Perturbation Method 
Using the homotopy perturbation method, the solution of an equation (1) is given by 

𝑣 = 𝑣0 + 𝑣1𝑝1 + 𝑣2𝑝2 + 𝑣3𝑝3 + ⋯, 
where 𝑣0 = 𝑢(𝑥, 0) = 𝛿(𝑥). By applying the Homotopy perturbation method, one can show that 

𝑣1(𝑥, 𝑡) = (
𝑑1 + (−1)𝛼𝑑2

2Γ(−𝛼)
) 𝑥−𝛼−1 × 𝑡

𝑣2(𝑥, 𝑡) = ((
𝑑1

2 + (−1)𝛼𝑑1𝑑2 + 𝑑2
2

2Γ(−2𝛼)
) 𝑥−2𝛼−1 + (

𝑑1 + (−1)𝛼𝑑2

2Γ(−𝛼 − 1)
) 𝑥−𝛼−2)

1

2
𝑡2.

 

We can derive the following recurrent relation 

𝑣𝑗 = ∫  
𝑡

0

(𝑑1

∂𝛼𝑣𝑛−1

∂𝑥𝛼
+ 𝑑2

∂𝛼𝑣𝑛−1

∂(−𝑥)𝛼
+ 𝜇

∂𝑣𝑛−1

∂𝑥
) 𝑑𝑡 

using the finite element or finite difference an approach. This is a persistent issue that merits more research, where 

𝑗 = 3,4,5, ⋯ 
𝑢0(𝑥, 𝑡) = 𝑣0(𝑥) = 𝛿(𝑥)

𝑢1(𝑥, 𝑡) = 𝑣0 + 𝑣1 = 𝛿(𝑥) + (
𝑑1 + (−1)𝛼𝑑2

2Γ(−𝛼)
) 𝑥−𝛼−1 × 𝑡

𝑢2(𝑥, 𝑡) = 𝑣0 + 𝑣1 + 𝑣2 = 𝛿(𝑥) + (
𝑑1 + (−1)𝛼𝑑2

2Γ(−𝛼)
) 𝑥−𝛼−1 × 𝑡

+ ((
𝑑1

2 + (−1)𝛼𝑑1𝑑2 + 𝑑2
2

2Γ(−2𝛼)
) 𝑥−2𝛼−1 + (

𝑑1 + (−1)𝛼𝑑2

2Γ(−𝛼 − 1)
) 𝑥−𝛼−2)

1

2
𝑡2

 

This is how we can locate the remaining portion. We assume 𝑢(𝑥, 𝑡) = lim𝑛→∞  𝑢𝑛(𝑥, 𝑡). 

This way we can calculate more terms, and we prove that 𝑢(𝑥, 𝑡) is the PDF for the univariate stable distribution with 

respect to 𝑥;  the PDF for the univariate stable distribution is, 

𝑝(𝑥) = 𝑢(𝑥, 𝑡) = lim𝑛→∞  𝑢𝑛(𝑥, 𝑡) = 𝑆𝛼 (𝑡
1

𝛼, 𝛽, 𝜇𝑡). 
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Fig. 1 Stability (a) 

 

We observe in Figure 1. Once we fixed the value of 𝑡 to be one of the following: 0.1, 0.2, 0.4, 0.6, or 0.9, we saw that the 

function 𝑢(𝑡) would exhibit a stable situation after some value on 0.000 beginning with -0.004 or higher negative value. 

This indicates that the function 𝑢(𝑡) is demonstrating stability. 

 

Adomian Decomposition Method 
By the Adomian Decomposition Method, we can find the solution of an equation (1) in recurrence form 

𝑢0 = 𝑢(𝑥, 0) = 𝛿(𝑥)

𝑢𝑘+1 = ∫  
𝑡

0

 (𝐷1

∂𝛼𝑢𝑘

∂𝑥𝛼
+ 𝐷2

∂𝛼𝑢𝑘

∂(−𝑥)𝛼
+ 𝜇

∂𝑢𝑘

∂𝑥
𝑢𝑘) 𝑑𝑡, 𝑘 = 1,2, ⋯

 

where 𝐷1 = −
1+𝛽

2𝑐
 and 𝐷2 = −

1−𝛽

2𝑐
. 

Hence, this calculationsarrive at the recurring relationship shown below. 

𝑢𝑗 = ∫  
𝑡

0

(𝐷1

∂𝛼𝑢𝑗−1

∂𝑥𝛼
+ 𝐷2

∂𝛼𝑢𝑗−1

∂(−𝑥)𝛼
+ 𝜇

∂𝑢𝑗−1

∂𝑥
) 𝑑𝑡 

for 𝑗 = 3,4,5, ⋯. As a result, the analytic-numerical approximation for the PDF of the univariate stable distribution 

is𝑝(𝑥) = 𝑢(𝑥, 𝑡) = ∑𝑛=0
∞  𝑢𝑛(𝑥, 𝑡). 

 

Variational Iteration Method 

We will see the solution of an equation (1) by Variational Iteration Method,  

𝑢𝑛+1 = 𝑢𝑛 + ∫  
𝑡

0

𝜆 (
∂𝑢𝑛

∂𝑠
− 𝐷1

∂𝛼𝑣𝑛

∂𝑥𝛼
− 𝐷2

∂𝛼𝑣𝑛

∂(−𝑥)𝛼
− 𝜇

∂𝑣𝑛

∂𝑥
) 𝑑𝑠 

choose 𝑢0(𝑥, 𝑡) = 𝑢(𝑥, 0) = 𝛿(𝑥). We get𝑢1 and 𝑢2 

𝑢1(𝑥, 𝑡) = (
𝐷1 + (−1)𝛼𝐷2

2Γ(−𝛼)
) 𝑥−𝛼−1 × 𝑡. 

and 

𝑢2(𝑥, 𝑡) = (
𝐷1

2 + (−1)𝛼𝐷1𝐷2 + 𝐷2
2

2Γ(−2𝛼)
) 𝑥−2𝛼−1 +

+ (
𝐷1 + (−1)𝛼𝐷2

2Γ(−𝛼 − 1)
) 𝑥−𝛼−2)

1

2
𝑡2

 

respectively. 

Hence, we arrive the recurrent relationship shown below. 

𝑢𝑛+1(𝑥, 𝑡) = 𝑢𝑛(𝑥, 𝑡) − ∫  
𝑡

0

(
∂𝑢𝑛

∂𝑠
− 𝐷1

∂𝛼𝑢𝑛

∂𝑥𝛼
− 𝐷2

∂𝛼𝑢𝑛

∂(−𝑥)𝛼
− 𝜇

∂𝑢𝑛

∂𝑥
) 𝑑𝑠 

The remaining Variational Iteration Method components can be acquired in this way. If compute further terms and 

demonstrate that 𝑢(𝑥, 𝑡) = lim𝑛→∞  𝑢𝑛(𝑥, 𝑡)  is the PDF for the univariate stable distribution with respect to x. (i.e., the 

solution converges to the PDF of the univariate stable distribution). 

We observe in Figure 2 after analyzing, once we fixed the value of  𝑡 to be one of the following: 0.1, 0.2, 0.4, 0.6, 

or 0.9, we saw that the function 𝑢(𝑡) would exhibit a stable situation after some value on 0.000 beginning with -0.05 or 

higher negative value. This indicates that the function 𝑢(𝑡) is demonstrating stability. 
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Fig. 2 Stability (b) 

 

THE APPLICATION OF AN ISSUE IN THE REAL WORLD 

A wide range of mathematical models can be accurately governed by fractional order differential equations. Fractional 

order differential equations provide an accurate governing mechanism for a wide variety of mathematical models. 

Liouville, Riemann, Leibniz, and others are credited with carrying out some of the earliest systematic research [15, 21]. 

Fractional calculus has, for a significant portion of history, been viewed as a domain of pure mathematics devoid of any 

practical applications. Yet, this state of affairs has been significantly altered during the past few decades. It has been 

discovered that fractional calculus can be helpful and even powerful, and an overview of the simple history of fractional 

calculus, especially in relation to applications, can be found in Machado et al. [13]. Machado et al. [13] also contain some 

examples of how fractional calculus has been used. The field of fractional calculus and its applications is currently 

undergoing a period of rapid progress, with applications in the real world becoming increasingly convincing [12, 16]. The 

study of fractional differentiation and integration is inherently multidisciplinary, and its applications can be found in a 

wide variety of fields and contexts. These fields include continuum mechanics, elasticity, signal analysis, quantum 

mechanics, bioengineering, biomedicine, financial systems, social systems, pollution control, turbulence, population 

growth and dispersal, landscape evolution, medical imaging, and complex systems, as well as some other branches of 

pure and applied mathematics [22, 23, 24, 25, 26, 27]. 

One of the problems among these, whichwe will have discussed here, is that stochastic processes have been 

suggested as possible replacements for geometric Brownian motion as a way to price options. The exponential L'evy 

process, which contributes to a diverse class of stochastic processes, does a good job of describing the stylized facts that 

have been found in relation to the distribution of asset prices.  

Important examples of the exponential L'evy process include the variance-gamma process, the normal inverse 

Gaussian process, the stable process, the log-stable process, and the CGMY process. These processes are jump processes 

in their purest form and have an endless amount of activity. It is important to point out that the Brownian motion is an 

illustration of the L'evy process, [see, Cont and Tankov [3]]. In this section, we will talk about how the CGMY process 

can be applied to the pricing of options. 

 

Definition (Carr et al. [2]). Let (𝑋𝑡) t ≥ 0, be a stochastic process in probability space. 𝑋𝑡 is theL´evy process if it has the 

𝑋0 = 0 and𝑋𝑡 has independent increments, stationary increments, and is stochastically continuous. In more details, 

lims→t  P [|𝑋𝑠  −  𝑋𝑡  |  >  𝑎]  =  0∀t ≥ 0 and a > 0. 𝑋𝑡is a cadlag. 

In practice, the L'evy approach relies heavily on the characteristic function. Using the L'evy-Khintchine formula (see Cont 

and Tankov [3]), we can get the characteristic function of the univariate L'evy process 𝑋𝑡 as given 

𝐹(𝑢; 𝑋𝑡) = 𝑒𝑓(𝑢,𝑋𝑡)𝑡. 

Where,𝑓(𝑢, 𝑋𝑡)= (𝑖𝛾𝑢 −  
1

2
𝜎2𝑢2 + ∫ (

+∞

−∞
𝑒𝑖𝑢𝑥  − 1 − 𝑖𝑢𝑥1|𝑥|≤1 ))𝜗(𝑑𝑥)).            (6) 

Where 𝑓(𝑢, 𝑋𝑡)  is the characteristic exponent and 1|𝑥|is an indicator function. If consider 

𝜗(𝑑𝑥) = 0 , then equation (6) is equal to the characteristic function of Brownian motion. And if we consider 𝜎 = 0 in 

equation (6), L’evy process is equal to the pure-jump process. 

Second, we will look CGMY Process, which has the following equation is as below (see, Samorodnitsky and Taqqu [20] 

and Rachev et al. [18]), 

𝜗(𝑑𝑥) = (𝐶 (𝑒−𝑀𝑥

𝑥1+𝑌⁄ ) 1𝑥>0 + 𝐶 (𝑒−𝐺|𝑥|

|𝑥|1+𝑌⁄ ) 1𝑥<0).                                 (7) 

Where, C, G, M >  0, 0 ≤  𝑌 <  2. These factors are the characteristics of the CGMY process. 𝐺 and 𝑀, respectively, 

display the left tail's decay rate and the right tail's decay rate. The exponential exponent 𝑌has a significant impact on how 

quickly the tail decay or the fine structure of the process. 



 

 
817 

In order to obtain the CGMY processes, one must first temper the tails of the stable processes. Because of this, the 

process is sometimes referred to as the traditional tempered stable method. The L'evy metric for the stable process has 

been shown to have some sort of connection to the CGMY process. One can achieve the L'evy measure of the stable 

process by first ensuring that 𝐺 = 𝑀 = 0 and then selecting distinct values for parameter 𝐶 for the left and right sides of 

the system. The fact that there is just the initial moment that exists is a limitation of the stable process. A finite moment of 

any order can be generated by first obtaining a stable process and then modifying its tails. In place of the CGMY method, 

some researchers opt to make use of the tempered stable method. 

We are consider equation (7), and assume  1𝑥<0 = 1𝑥>0 = 1, 𝐺 = 𝑀 = 0, 

Case 1: when we consider|𝑥| = +ive value only, so equation (7) will be become  

𝜗(𝑑𝑥) = ((2𝐶
𝑥1+𝑌⁄ ))                                                                         (8) 

Case 2: If we take|𝑥| = negative value then we find  𝜗(𝑑𝑥) = 0 . 

 

We calculate 𝜗(𝑑𝑥) by equation (8) on different parameter value, and analyzing graphical to see stability. 

 
Table 1 

x c=150, y=0.3 c=200, y=0.3 c=250, y=0.3 c=300, y=0.3 

10 15.03561701 20.04748935 25.05936168 30.07123402 

11 13.28344629 17.71126172 22.13907715 26.56689258 

12 11.86275702 15.81700935 19.77126169 23.72551403 

13 10.69042317 14.25389756 17.81737195 21.38084634 

14 9.708559763 12.94474635 16.18093294 19.41711953 

15 8.875700069 11.83426676 14.79283345 17.75140014 

16 8.161411531 10.88188204 13.60235255 16.32282306 

17 7.542887961 10.05718395 12.57147993 15.08577592 

18 7.002723812 9.336965083 11.67120635 14.00544762 

19 6.527420235 8.703226981 10.87903373 13.05484047 

20 6.106357973 8.141810631 10.17726329 12.21271595 

21 5.731076051 7.641434735 9.551793419 11.4621521 

22 5.39475554 7.193007386 8.991259233 10.78951108 

23 5.091843745 6.789124994 8.486406242 10.18368749 

24 4.817776407 6.423701876 8.029627344 9.635552813 

25 4.568769453 6.091692604 7.614615755 9.137538906 

26 4.341660919 5.788881226 7.236101532 8.683321839 

27 4.133789533 5.511719378 6.889649222 8.267579067 

28 3.942900466 5.257200622 6.571500777 7.885800933 

29 3.767071449 5.022761932 6.278452415 7.534142898 

30 3.604654325 4.806205767 6.007757208 7.20930865 

 

 

 
Fig. 1(a) 
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Fig. 1(b) 

 

In Table 1, we consider x =10 to 30 percent, parameter c = 150 to 300, and the value of y = 0.3 years. In Figures 1(a) and 

1(b), we can see the stability and fluctuation of𝜗(𝑑𝑥). So we looked,𝜗(𝑑𝑥) is an identical decrease.And it is showing 

positive half tail. 

 
Table 2 

x c=150, y=0.4 c=200, y=0.4 c=250, y=0.4 c=300, y=0.4 

10 11.94322 15.92429 19.90536 23.88643 

11 10.45133 13.9351 17.41888 20.90266 

12 9.252679 12.33691 15.42113 18.50536 

13 8.27181 11.02908 13.78635 16.54362 

14 7.45662 9.94216 12.4277 14.91324 

15 6.770075 9.026767 11.28346 13.54015 

16 6.185193 8.246924 10.30866 12.37039 

17 5.681889 7.575852 9.469815 11.36378 

18 5.244931 6.993241 8.741551 10.48986 

19 4.862574 6.483432 8.10429 9.725148 

20 4.525632 6.034176 7.54272 9.051265 

21 4.226825 5.635766 7.044708 8.45365 

22 3.960313 5.280417 6.600522 7.920626 

23 3.721365 4.96182 6.202275 7.44273 

24 3.50611 4.674813 5.843516 7.01222 

25 3.311351 4.415135 5.518919 6.622702 

26 3.13443 4.17924 5.22405 6.26886 

27 2.973117 3.964156 4.955195 5.946234 

28 2.825531 3.767374 4.709218 5.651061 

29 2.690073 3.586764 4.483455 5.380146 

30 2.565379 3.420505 4.275631 5.130758 
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Fig. 2(b) 

 

In Table 2, we consider x =10 to 30 percent, parameter c = 150 to 300, and the value of y = 0.4 years. In Figures 2(a) and 

2(b), we can see the stability and fluctuation of 𝜗(𝑑𝑥). So we looked,𝜗(𝑑𝑥)is a greater decrease on the parameters c = 

200 and c = 250,  and a lesser decrease in the parameter c =150 value. The value of parameter c = 300 is a medium 

decrease. And it is showing positive half tail. 

 
Table 3 

x c=150, y=0.5 c=200, y=0.5 c=250, y=0.5 c=300, y=0.5 

10 15.03561701 20.04748935 25.05936168 30.07123402 

11 13.28344629 17.71126172 22.13907715 26.56689258 

12 11.86275702 15.81700935 19.77126169 23.72551403 

13 10.69042317 14.25389756 17.81737195 21.38084634 

14 9.708559763 12.94474635 16.18093294 19.41711953 

15 8.875700069 11.83426676 14.79283345 17.75140014 

16 8.161411531 10.88188204 13.60235255 16.32282306 

17 7.542887961 10.05718395 12.57147993 15.08577592 

18 7.002723812 9.336965083 11.67120635 14.00544762 

19 6.527420235 8.703226981 10.87903373 13.05484047 

20 6.106357973 8.141810631 10.17726329 12.21271595 

21 5.731076051 7.641434735 9.551793419 11.4621521 

22 5.39475554 7.193007386 8.991259233 10.78951108 

23 5.091843745 6.789124994 8.486406242 10.18368749 

24 4.817776407 6.423701876 8.029627344 9.635552813 

25 4.568769453 6.091692604 7.614615755 9.137538906 

26 4.341660919 5.788881226 7.236101532 8.683321839 

27 4.133789533 5.511719378 6.889649222 8.267579067 

28 3.942900466 5.257200622 6.571500777 7.885800933 

29 3.767071449 5.022761932 6.278452415 7.534142898 

30 3.604654325 4.806205767 6.007757208 7.20930865 
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Fig. 3(b) 

 

In Table 3, we consider x =10 to 30 percent, parameter c = 150 to 300, and the value of y = 0.5 years. In Figures 3(a) and 

3(b), we can see the stability and fluctuation of 𝜗(𝑑𝑥). So we looked, 𝜗(𝑑𝑥) is a greater and same decrease on the value 

of parameters c = 150, c = 250, c=300 and a lesser decrease in the parameter c =200 value.And it is showing positive half 

tail. 

 
Table 4 

x c=150, y=1 c=200, y=1 c=250, y=1 c=300, y=1 

10 3 4 5 6 

11 2.479339 3.305785 4.132231 4.958678 

12 2.083333 2.777778 3.472222 4.166667 

13 1.775148 2.366864 2.95858 3.550296 

14 1.530612 2.040816 2.55102 3.061224 

15 1.333333 1.777778 2.222222 2.666667 

16 1.171875 1.5625 1.953125 2.34375 

17 1.038062 1.384083 1.730104 2.076125 

18 0.925926 1.234568 1.54321 1.851852 

19 0.831025 1.108033 1.385042 1.66205 

20 0.75 1 1.25 1.5 

21 0.680272 0.907029 1.133787 1.360544 

22 0.619835 0.826446 1.033058 1.239669 

23 0.567108 0.756144 0.94518 1.134216 

24 0.520833 0.694444 0.868056 1.041667 

25 0.48 0.64 0.8 0.96 

26 0.443787 0.591716 0.739645 0.887574 

27 0.411523 0.548697 0.685871 0.823045 

28 0.382653 0.510204 0.637755 0.765306 

29 0.356718 0.475624 0.59453 0.713436 

30 0.333333 0.444444 0.555556 0.666667 
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Fig. 4(b) 

 

In Table 4, we consider x =10 to 30 percent, parameter c = 150 to 300, and the value of y = 1 years. In Figures 4(a) and 

4(b), we can see the stability and fluctuation of 𝜗(𝑑𝑥). So we looked 𝜗(𝑑𝑥)isdecrease in the parameters c = 150, c =200, 

c =250, and 300 and met at the same point until x = 30.And it is showing positive half tail. 

 
Table 5 

x c=150, y=1.5 c=200, y=1.5 c=250, y=1.5 c=300, y=1.5 

10 0.948683 1.264911 1.581139 1.897367 

11 0.747549 0.996732 1.245915 1.495098 

12 0.601407 0.801875 1.002344 1.202813 

13 0.492337 0.65645 0.820562 0.984675 

14 0.409073 0.545431 0.681789 0.818147 

15 0.344265 0.45902 0.573775 0.68853 

16 0.292969 0.390625 0.488281 0.585938 

17 0.251767 0.335689 0.419612 0.503534 

18 0.218243 0.29099 0.363738 0.436486 

19 0.19065 0.2542 0.31775 0.3813 

20 0.167705 0.223607 0.279508 0.33541 

21 0.148448 0.19793 0.247413 0.296895 

22 0.132149 0.176199 0.220249 0.264298 

23 0.11825 0.157667 0.197084 0.2365 

24 0.106315 0.141753 0.177191 0.212629 

25 0.096 0.128 0.16 0.192 

26 0.087034 0.116045 0.145056 0.174068 

27 0.079198 0.105597 0.131996 0.158395 

28 0.072315 0.09642 0.120524 0.144629 

29 0.066241 0.088321 0.110402 0.132482 

30 0.060858 0.081144 0.10143 0.121716 
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Fig. 5(b) 

 

In Table 5, we consider x =10 to 30 percent, parameter c = 150 to 300, and the value of y = 1.5 years. In Figures 5(a) and 

5(b), we can see the stability and fluctuation of 𝜗(𝑑𝑥). So we looked 𝜗(𝑑𝑥) is equal and less decrease on the parameters c 

=200, c =250, and 300. More decrease in the parameter c =150 value. And it is showing positive half tail. 

 

CONCLUSION 

With the homotopy perturbation approach, the Adomian decomposition method, and the variational iteration method, it 

might be possible to get good analytic-numerical approximations for the probability density function of univariate stable 

distribution. For the purpose of modeling heavy tail models, stable distributions, including tempered stable distributions, 

might prove helpful. As an accurate governing mechanism, fractional calculus is heavily relied on in the fields of 

continuum mechanics, elasticity, signal analysis, quantum mechanics, bioengineering, biomedicine, financial systems, 

social systems, pollution, control, turbulence, population growth and dispersal, landscape evolution, medical imaging, and 

complex systems. 
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