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Abstract

A new one parameter lifetime distribution named “Fuyi distribution” for modeling lifetime data has been introduced.
Some important mathematical properties of the proposed distribution including its shape, moments, skewness, kurtosis,
coefficient of dispersion, index dispersion, quantile function, stochastic ordering, Bonferroni and Lorenz curves, moment
generating function, characteristics function, distribution of ordered statistics, Renyi entropy measure, survival and hazard
rate function, stress-strength reliability have been discussed. The estimation of its parameter has been discussed using
maximum likelihood estimation. The usefulness and the applicability of the proposed distribution have been discussed
and illustrated with two real lifetime data sets from medical science and environmental.

Keywords
Lifetime distribution, Moments, Hazard rate function, Bonferroni and Lorenz curves, Order statistics, Estimation of
parameter, Goodness of fit

INTRODUCTION

Distribution theory and modelling plays a significant role in diverse fields such as; in medical science, engineering,
economic and other science related areas. The need for the development of new distributions has become a necessity in
this present ever evolving world, as different events are being carried out and these events generates data that needs to be
studied for future insight.

Some data take shapes that may not be properly modelled by already existing probability distributions, thereby
demanding the need for the modification/advancement of already existing probability distribution or the development of
new probability distribution respectively. Another important key for modelling and analyzing data is the hazard rate or
failure rate. Researchers such as Marshall, A.W. & Olkin, I. (2007) proposed a one parameter life time distribution having
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probability density function called the exponential distribution and it is used to model data with constant hazard rate
function. To overcome the difficulty of the exponential distribution to model data with non-constant hazard rate, the
following distributions were developed, for example; Ghitany M.E., Atieh B., & Nadarajah, S. (2008) proposed a new
distribution by exploring a two-component distributions to obtain a one parameter distribution called the Lindley
distribution with an increasing hazard rate function using the exponential distribution with scale parameter and a Gamma

distribution having shape parameter 2 and scale parameter @ with mixing proportion p = Hil Padgett W.J. (2011)
+

proposed a two parameter distribution called the Weibull distribution used to model data with increasing hazard rate
function, Rama Shanker (2016) proposed a one parameter distribution called the Aradhana distribution also using the

three-component distribution by mixing the Exponential distribution with scale parameter &, a Gamma distribution with
shape and scale parameter 2 and @, and a Gamma distribution with shape parameter 3 and scale parameter 6

. . . . . 62 20 2
respectlvely_W|_th t_helrs mixing proportlo_n o_f 9?+29+2,92+29+%,a_nd 0712047 Shukla KK. _(201?3) _devc_alopeo_l a one-
parameter distribution called the Pranav distribution from two distributions namely; Exponential distribution with scale
parameter # and Gamma distribution having shape parameter 4 and scale parameter €. Shanker R, and Shukla KK
(2017) introduced a one-parameter distribution called the Ishita distribution based on a two-component mixture of the

Exponential distribution having a scale parameter ¢ and a Gamma distribution having a shape parameter 3 and scale
3

parameter @ with mixing proportion p=m, Kumar Devendra. (2017). introduced a two-parameter lifetime
+

distribution named the Burr type XII distribution with some statistical properties, Lomax K.S. (1954) introduced a two-
parameter distribution named Lomax distribution with an decreasing hazard rate function for modelling life time data,
Rama Shanker (2015) studied a one-parameter distribution called the Akash distribution based on a two-component

mixture of an Exponential distribution with scale parameter & and a Gamma distribution having a shape parameter 2 and
a scale parameter € with a mixing proportion of p = 91 other distribution introduced by mixing the exponential
+

distribution and the gamma distribution are; the Rama distribution by Rama Shanker (2017), the Shanker distribution by
Rama Shanker (2015), the Hamza distribution by Ahmad, Aijaz & Jallal, Muzamil & Ain, S Qurat & Tripathi, Rajnee.
(2020).

There are some other existing distributions developed by transforming or modifying the already existing distributions,
distributions such as; the Inverse and Inverse power Ishita by Shukla, K.K. (2021) and Frederick, A. O., Osuji, G.A., &
Onyekwere, C.K. (2022) respectively, the Inverse and inverse power Hamza distribution by Okpala, I.F., Obiora-llouno,
H.O., Omoruyi, F.A. (2023) and Omoruyi, Frederick & Chrisogonus, Onyekwere & Udofia, Edidiong & Florence, Ejiofor
& Chukwunenye, Victor. (2023), the inverse power Rama by Chrisogonus K.O., George A.O., Samuel U.E. (2020), the
new exponentiated Weibull distribution by Pal, Manish & Ali, M. & Woo, Jungsoo. (2003), a new variant of Rama
distribution with simulation study and application to real life data by Omoruyi, F.A., Omeje, I.L., Anabike, I.C., &
Obulezi, 0.J. (2023), exponential inverse exponential by Pelumi Emmanuel Oguntunde, Adebowale Olusola Adejumo,
and Ebahoro Alfred Owokolo (2017), the generalized inverted exponential distribution by Abouammoh, A.M. and
Alshingiti, A.M. (2009), etc. In this paper, a new one-parameter continuous distribution having its probability density
function (pdf)

0

fp (X,0)=

o (.0) 720007 + 6% +1)
is proposed and we call this distribution, Fuyi Distribution. This distribution was developed due to the motivation of
creating a distribution that will best fit a data during modelling, possibly the data may have already had other existing
distributions that could already model it. But since the aim of every future event is to attain minimal error during
forecasting, we hope to obtain a distribution that could perform better than some existing distribution, to obtain the
mathematical properties of the proposed distribution.

The pdf (1.1) is a mixture of three distribution, Exponential distribution with scale parameter €, Gamma
distribution with shape and scale parameters 7 and & respectively, and Gamma distribution with shape and scale
parameter 3 and € respectively. The mixture is of the form

feo (%,0) = Py0: (% 0)+ ,9,(%7,0)+ P,9,(x:3,0)
L p, = o andp, = & are the mixing proportion such that
0" +0°+1'"7 9T +0°+1" T 07 +60°+1 '
P, + P, + P; =1. The cumulative density function is given as
49“x(09x5 +660°x* +300" x> +1200°x” +3600°x + 3606k + 7200* + 720)
Fro(x,0)=1-|1+ —
72007 +6° +1)

ﬂ

(6"x° +3600°x> +720) ™ (1.1)

where p, =

}eg" (1.2)



* — t=45

-------- t=18 e 1236
——— t=49 - =19
— t=40 — =37

Fig. 1a: pdf plot of X~FD(x, 0) Fig. 1b: pdf plot of X~FD(x, )

Fig 2a:cd12(plol of FD Fig 2b:cd13(plol of FD
Fig. 2a: cdf plot of X~FD(x, 0) Fig. 2b: cdf plot of X~FD(x, 6)

STATISTICAL PROPERTIES OF FUYI DISTRIBUTION

Moment
The rth non-central moment of a Fuyi random variable X is given as

! ry__ T r _ T r 6
s = E(X )_lx fFD(X)dX_lx 720007 + 6% +1)
E(x")- O'T(r +7)+3600°T(r +3)+ 7201 (r +1)
- 7200" (67 +6° +1)

(63x® +3606°x? + 720 *dx

2.1)

Mean
The arithmetic mean is obtained from equation (2.1) above by substituting r = 1

70" +30° +1

2.2
067 + 9% +1) @2

Other useful non-central moments
The 2nd, 3rd and 4th non-central moment are obtained from equation (2.1) by substituting r = 2, r =3, and r = 4
respectively

- 2(2807 +66° +1)
T 0 107 +1)
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6(846" +106° +1)

, = (2.4)
S PI Y
2421067 +156° +1)
Hy = 47 3 (25)
[ (6’ +0 +1)
Useful central moments
The 2nd, 3rd and 4th central moments are respectively
Hy = =3ty 00+ 2417 27)
My = 1y — A+ 6% =3 (2.8)
,  10560% +1100™ + 720" +216° + 200° +3 29
o2 = : (2.9)
0’07 +6° +1)
1407 +180"" — 780" —3666"° + 3726'° + 60° + 3420" +5226° + 306° + 2 (2.10)
# 00" +6° +1f
—42936%° —126986* —115010°' —132300*° — 251770"" — 43580"° —128196"
1, = —-110350" — 2850 —88160"° —8510° —17070" —7896° — 2250° —14 2.11)
) 0'(67 +6° +1)f
Coefficient of skewness
The coefficient of skewness of Fuyi distribution is given as
_ My _ 146" +180" — 780" — 3666 +3720" + 66° + 3426 +5226° + 306" + 2 (2.12)
(O'Z)g (1056 +1106 + 7267 + 216° + 206° + sfz
Coefficient of kurtosis
The coefficient of kurtosis of Fuyi distribution is given as
—42930%° -126986** —115016°* —~132300%° - 251776"" — 43586"° —128196"
potu _ —110356" - 2856"* — 88166 —8516° —17076" — 7896° — 2250° —14 (2.13)
(c?f (1056* +1106* + 720" +216° + 206° + 3f
Coefficient of variation
The coefficient of variation of Fuyi distribution is given as
£_ 0,00 100V1056™ +1106 + 726" +216° + 206° +3 (2.14)
u 1 70" +36° +1
Index of dispersion
The index of dispersion of Fuyi distribution is given as
_ o’ 1050" +1100'° +720" +216° + 200° +3 (2.15)

wo 0(767 +36° +1f67 +0° +1)

Quantile Function
The q quantile of Fuyi distribution is obtained using F(Xq ): P(X < xq)z qfor 0 <qg<1.Replace Xwith X, in the cdf

of Fuyi distribution and equate to
[ 000 +80°x," +3007x,* +1200°x, + 3600°x, + 360k, + 7200 + 720 .,
=] — + e q
| 720007 + 6° +1)
72067 +60° +1)+ 6%x, L (2.16)
(6°X2 +66°x? +3007x¢ +1206°x2 +3600°x, + 3606k, +7200* +720)

(L-q)720(0” +6° +1))= {

Stochastic Ordering of Fuyi Distribution
Let X ~F(6,)and Y ~ F(6,).1f 6,>6,,then X <, Y hence X <, Y, X <., Y,and X <Y
Proof:
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01 13,6 5,2 —6x
0 3600°x% + 720
fy (x) _ 720(917+013+1)( 1% + 36065 + 720
fY (X) 921

13,6 5.2 —0,x
720(027+923+1)(02 X® +36005X° + 720

{.91 (0] +62 + 1)}[011&6 +3600°%° + 7zo}e_x(92_gl)

= 2.17
0,(07 + 67 +1) | 62x° +36005x* + 720 @17)
Taking natural log of egn. 2.17, will yield
7 3 13,,6 52 72
o 0] 91(927 +923 +1) o 0113x6 +3606>15x2 72010 o
f, (x) 0,(07 +6° +1) 02°x® +3606; x> +720
Differentiating the natural log of eqn. 2.17, will yield
df ()] 1440(02°05 — 0502 )" + 4320x° (012 - 0 ) + 518400x(6° —9§)+ 6,-6)=0
dx| £, (x) (6°x° +3600°x? + 720 02*x° + 36065 x* +720) 2
Bonferonni and Lorenz Curve
The Bonferonni and Lorenz curves are defined as
_ i q — i oo _ oo _ i _ (o]
B() = {0 a:f(x)da; gl o~ [7af o] = Tu— [ xfodx] @19
_720(76%+360%+6) 0%y (5 )~3600°Y (4, )= 7207 (2 o)
B(p) - 720p(798q+394+9) ! : (2'19)
L(p) = i xf ()dx = | [ xf G)dx = 7 xf x| = & [u— [ xf (x)dx] (2.20)
_720(76%+360%+6) 6%y (5 )~3600°Y (4, )= 720Y (2 ¢)
L) = 720(79§i3e4+9) = - (2.21)

Maximum likelihood estimation of the Fuyi distribution parameter
Let X, X,, X;,..., X, be arandom sample drawn from a Fuyi distribution, then the likelihood function is given as

n P2 )
(o (x,0)) = 1‘1[ S R (6™x° +3600°x> + 720

0 " 762’_‘1")(‘ (o136 5,2
| 7207 s 11 e = [](6*x° +3606°x* +720) 2.22)

i=1

Taking natural log of egn. 2.22 will yield

_ 0 _ \ \ 13,6 5,2
Ln(ﬁ(fFD(x,é?)))—nln[720(97+93+1)j 9;xi+;m(¢9 X® +3600°x? +720)

Differentiating the natural log of eqn.2.22 will yield
n(l-66" —20°) & 136'x° +18000° X2
= 7. 3 _zxi REPSEN 5.2 =
007 +6°+1) G 0°x° +3600°x% + 720

(2.23)

The MLE is implemented using Newton-Raphson’s numerical iterative method since it has no closed-form solution.

Moment generating function of Fuyi distribution
The moment generating function of a X ~ Fuyi (0) is given by

M, (t)=E(e*)= Tetx f o (X)dx (2.24)
0
o Tetx (6°x° +3600°x? + 720)e *dx (2.25)

720007 + 0° 1)

0
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_ 0 T —x(6-t)( 13,6 5.2
= 705" + 57 11) ! e (6*3x® +3600°X + 720 }ix

_ 6 3°° » _x( — ) 2 3 _X( - ) 0 i _X(e_ )
_720(07+93+1)|:61 .([X7 le 0th+36005.(l;X le Btdx+720'[xl le th
where,
jx“‘le‘&dx = M -
0 0
We have that;
% r7 3 r
B 0" 3600° ——— +720-——
72@07+93+1{ e T e (0—0}

0+ 0%(0-1) +0(0-t)
()= (O-t) (0" +6° +1)

(2.27)

Characteristic function of Fuyi distribution
The moment generating function of a X ~ Fuyi (0) is given by

#y (t)=Ele™)= Te‘i“ f o (X)dx (2.29)

6" +0°(6—it)' + 60 —it)°

#(t)= (6?—it)7(6?7 +6° +1)

(2.29)

Distribution of the order statistics
Suppose X;, X, Xg,..., X, is a random sample of Xy;r=123,...,n are the r™ order statistics obtained by arranging
X, in ascending order of magnitude > X, <X,<X,<..<X,and X, = min(Xl,Xz, X3,...,Xr),
X, = max(Xl, Xy Xgeen Xr) then the probability density function of the rth order statistics is given by
n! r-1 n-r
f..(%0)=———— 5 (X;0)Fp (X%,0)] [1—F (X0 2.30
050)= gy o 05O () B Fro6)] 230

where f() and F() are the pdf and cdf of Chris-Jerry distribution respectively. Hence, we have

r-1
10(6%3x® By 2 B 0*x (0°x ° +66°x * +3007x ° +1200°x * + 3600°x_ + 3606k + 7200* + 720
(o)~ MO + 36067 + 720 {1{“ 0%, ! ! : ! ! )] 231)

~ (r-1(n-ry720(0" + 6° +1) 72007 + 6° +1)

0'x,(6°,° +60°x.* +3007x,” +1200°x, + 3600°, + 3606k, +7200° +720)| ,. |
1+ e
720(0" + 6° +1)

The pdf of the largest order statistics is obtained by setting r =n
n-1
_ nofe + 36005 + 720 [1_ {1+ 0% (0°%.° + 660°x, " +3007x, +1200°x,” +3600°, +360¢K, +7200" + 720)}5““ }

fn:n(X; 9) 720(97 +6° +1) 720(97 +6° +1)

fin (X; 9) =

n-1
no(6*x¢ +3606°x* + 720 L 0°x, (ngqs +66°X,* +3007x.° +1200°X,” + 3600°, + 360K, +7200" +720) ot
72000 + 6° +1) 72000 + 6° +1)

Information measure and asymptotic behaviour of Fuyi distribution
Entropy is the quantity of uncertainty or randomness in a system. It is an information measure for non-negative @ #1.
The Rényi Entropy for Fuyi distributed random variable X is

R, (x)=lim(1,(f,)—logn) =1ilogT f(x)dx (2.32)
N—o0 —a) 0

For ® — 1, we have the special case of Shannon Entropy Rg (X)
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72007 + 6° +1)

_iz o\ k 9w+5k+8| TX(2k+4I+1)e—w€<dX
&5k )2+360' (07 +6° +1)

0

_ ii(f}[ﬂ O (2k + 41 +1)

2+360' (67 +6° +1) )™

o k k w@+3k+41-1
_ ZZ(@(, ] 0 I'(2k + 41 +1) 233)

k=0 1=0 2k360| (07 + 63 +1Xa))2k+4l+1
The asymptotic behaviour of the Fuyi distributed random variable is investigated by taking the limit of the pdf as X — 0

=~ log T[ 0 (63x® +3600°x2 + 720)e"‘)wdx
0
Kk

and as X —oo.
: 0 0
lim 0°x® +3600°x* + 720 = 2.34
=0 720(07 + 6° +1)( F (07 +6° +1) (239
and
o (6"x° +3600°x* + 720 * =0 (2.35)

o 72007 +6° +1)

Survival function and failure rate
Given a continuous distribution with pdf and cdf in equations (1.1) and (1.2), the survival function is given by
4 95 8,4 73 6,2 5 4
S, (x:0) =1 Fuy (x:0)=| 1+ 0'x(6°X° + 66°x" +30607x +12097x 23600 X +3606K + 7200" +720) e x 950 (2.36)
720(0" + 6° +1)

Notice that for Fuyi distribution the survival function Sg, (x; 9): lasx — 0 and Sgy (X; (9) = 0 as x —o0. Also, the
failure rate h, (X; (9), an important tool in reliability measure and engineering is given by
oo (x,6) 0(6**x° +3606°x* +720) (2.37)

heo (X, 0) = =
> (%0) Seo(x,8) 72007 + 6% +1)+ 0°x(0°X° + 60°x* +3007x* +1206°x? +3606°x + 3606k + 7200 + 720)

0
For Fuyi distribution, the failure rate exhibits the following behavior; h., (X, 49)= (—) as x — 0 and h (X, 6’) =0
0" +60°+1

as X — 00,

0 1 2 3 4 5 0 1 2 3 4 5
Fig 3a:5urvivalxrale plot of FD Fig 3b:5uwivalxrale plot of FD
Fig. 3a: survival rate plot of X~FD(x, 9) Fig. 3b: survival rate plot of X~FD(x, 8)
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Fig. 4a: hazard function plot of X~FD(x, 6) Fig. 4b: hazard function plot of X~FD(x, 6)

The Figs. 3a and 3b show the plots of survival function and figs 4a and 4b are the plots of the hazard function for various
parameter values.

Stress-Strength reliability
An examination of the Stress-Strength Reliability of Fuyi distribution is also carried out. The stress-strength reliability is
used to measure the life of a component that possesses random strength X and subjected to random stress Y. In a case,
where the applied stress Y is higher than the strength x of the system, that is X < Y, the component fails. For the
component to function efficiently, the strength of the system must be greater than the stress applied to it. Hence, R = P
(Y< X) is the measure of the reliability of a component and find application in aging of concrete pressure vessels
deteriorating of rocket motors, ceramic components and so on.

Given that X and Y are independent random variables denoting strength and stress of a component. We assume
further that X and Y follow Fuyi distribution with pdf given in equation (1.1), with parameter 6; and 6, respectively.
Then, the stress-strength reliability is obtained as follows:

R=P(Y <X)= f PY <X =x)fx(x)dx = f fx(x,0,)F(x,65)dx
0 0
Therefore, we have;

©T9(613x° + 36002x2 + 720
R =f e —3 )e_elx 1
. 720067 + 03 + 1)
L, (B3x(03x° + 603" +3007x° + 12005x” + 36005x + 3600,x + 72001 +720)) _, .
- e
720(6] + 62 + 1)

(2.38)
(0,67+6,63+6,)013(0,+6,)°+(0,67+6,05+6,)605(6,+86,)*°
+(0167+6,03+0,)(0,+6,)12+92401*023+28(0,63°+61*05+01463) (0, +6,)*+
4620101%(0,+6,)+210014611(8,+6,)2+8401461°(6,+6,)3
+7(30,032+01*05+61405)(61+02)5+(010,+1560,603)(0,+6,)°
+(0,632+100,03°)(8,+6,)7+(6103 +60,05+66,63 ) (0, +6,)8+
(0163°+30,05+36,07)(01+6,)°+(0,05+6,163)(61+62)1%+
(6105+6,65)(8,+6,)11
(0146,)13(07+03+1)(67+035+1)

(2.39)

Applications to Lifetime Data

Fuyi distribution has been fitted to some real lifetime data sets and it gives better fit than Log Normal, Burr XII, Weibull,
Gamma, Lomax, New Exponentiated Weibull distribution, Extended Inverse Exponential, and Generalized inverted
exponential distributions.
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Table 1 List of one-parameter distributions For Comparisom

Distribution f(x) F(x)
1-
Proposed Fuyi 0(03x° + 36005x2 + 720)e~%* 1+
Distribution 72007 +6° +1) 94x(69x5+698x4+3097x3+12096x2+36095x)
+3600x+7200*+720
720(07+63+1) ‘
Burr XII x€71 o~k
Distribution ck (1 + xO)F+1 1-(1+x°)
Lnormal 1 B (Inx — p)? 1 [1 erf (Inx - u>]
Distribution xoN2TT exp 202 2 a2
. al yl et °
GIE Distribution F(exp [_ ;]) (1 — exp [_ ;]) 1- <1 —exp [— ;]
—(a+1)
Lomax all +x/ 14 %/ ) @D
Distribution ( /{1) 1- ( //1)
Gamma 6%x*t 1
Distriibution ) Ty (@09
Weibull kT _(x ) Y
Distribution 1(1) e () 1— ()
Extended ab 1
Inverse (ﬁ) a (m) exp(—a(a/(l - a))) 1- exp(—a(a/(l - a)))
Exponential _ Where, a = exp(—0/x)
Distribution Where, a = exp(—6/x)
NEX ayAYxY711 —al% ta .
Distribution Where, a = exp{—(Ax)"} [1 - exp{=(4x)"}]

The application is on rainfall reported at Los Angeles Civic center from1943 to 2018 and studied by Mustapha nadar and
faith kizilaslan (2015), the data is in table 1

Table 2 The Rainfall reported at the Los Angeles Civic Centre from 1943 to 2018 in the month on March
455 247 343 3.66 0.79 3.07 140 0.87 0.44 6.14 048 299 056 1.02
530 0.31 057 1.10 2.78 1.79 249 053 250 3.34 149 236 053 207
3.78 4.83 1.81 1.89 8.02 585 4.79 4.10 3.54 837 0.28 1.29 5.27 0.95
0.26 0.81 0.17 592 7.12 274 186 6.98 216 4.06 1.24 2.82 1.17 0.32
432 1.47 214 2387 0.05 0.01 0.35 0.48 3.96 1.75 0.54 1.18 0.87 1.60
0.09 2.69

The determiners of model performance used here are the Akaike Information Criterion, Corrected Akaike Information
Criterion, Bayesian Information Criterion, Hannan-Quinn Information Criterion, negative Log-Likelihood, Cramer Von
Mises (W*), Anderson Darling (A*), While the Kolmogorov-Smirnov (K-S) statistic and the p-value determines the
fitness of the distribution to the data.

Table 3 Analytical measures of performance and fitness using the Rainfall reported Data at Los Angeles

> *

Distr. NLL AIC CAIC BIC HQIC W A 0 B K-S P-value
Fuyi -137.42 276.836  276.893 279.112  277.742 0.047 0.302 0.4484 - 0.0650 0.9212
Burr X1l -146.66 297.326  297.499 301.879  299.139 0271 0.631  1.5858 0.7163  0.1418 0.1108
NEX -137.08 278.151 278.325 282.704  279.963 0.057 0.353 0.1774 1.2550  0.1844 0.0150
EIE -140.00 276.940 277.114 281.493  278.753 0.037 0.245 0.0034 0.0083  0.0795 0.7533

Weibull  -135.87 275.816 275991 280.370  277.630 0.029 0.187 1.1183 25477  0.0721 0.8485
Gamma -136.17 276.347 276.521 280.900 278.160 0.036 0.234  1.1373 2.1543 0.0766 0.7914
Lomax -136.53 277.061 277235 281.615 278.874 0.037 0.236 30111970 12287832 0.0794 0.7534
GIE -183.70 371401 371575 375.955 373.214 1.146 6.656 0.4521 0.1898 0.2663 7.347e-05
Lnormal -145.70 296.367  296.541 300.921  298.180 0.227 1444 0.3756 1.3388  0.1102 0.3461

Based on the results in table 3, the proposed Fuyi distribution fits the rainfall reported data at Los Angeles Civic Centre
having the highest p-value= 0.9212. However, in parameter estimation it performed better than all competing distributions
except the Weibull distribution. The performance measure for the proposed distribution, Fuyi distribution, had the least
information criterions among others, except for that of the Weibull distribution.
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Fig. 5 Density, cdf, survival, and TTT plots for the Rainfall reported at the Los Angeles Civic Centre
from 1943 to 2018 in the month of March
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Fig. 6 PP plots for the Rainfall Data reported at the Los Angeles Civic Centre from 1943 to 2018 in the month of March




Figure 5 and 6 displays the goodness of fit of the selected distribution to the data on the rainfall reported at the Los
Angeles Civic Centre from 1943 to 2018 in the month of March. The next data is on the infant mortality rate per 1000 live
birth for some selected countries Onyekwere, C.K., Okoro, C.N., Obulezi, O.J., Udofia, E.M., & Anabike, I.C. (2022).

Table 4 Infant Mortality Rate per 1000 live birth for some selected Countries
56 10 22 3 69 6 7 11 4 4 19 13 7 27 12 3 4 11 84 27
25 6 35 14 11 12 6

In Table 5, we fit the Fuyi distribution including some other distributions to the data on the infant mortality rate per 1000
live birth for some selected countries.

Table 5 Analytical measures of performance and fitness using the Infant Mortality Rate per 1000 live Birth

* *

Distr. NLL AIC CAIC BIC HQIC W A [ /] K-S P-value
Fuyi -70.78 143552  143.658 145242 144.163 0.1185 0.7720 1.9611 - 0.1126 0.6908
Burr X1l -92.86  189.719  190.043 193.097  190.940  0.6770 3.7911 3.0168 0.3077  0.3232 4.71e-4
NEX -71.34 146.678  147.002 150.056  147.899  0.1672 1.0583 0.0183 2.7195  0.1310 0.4994
EIE -79.68 163.350 163.675 166.728  164.572  0.4130 2.4340 0.9779 2.2108  0.2210 0.0403

Weibull  -69.56 143.116  143.441 146.494  144.338 0.1183 0.7705  2.5055 3.5164  0.1187 0.6256
Gamma -73.55 151.275 151.598 154.653  152.497 0.2413 14844 3.1673 0.9847  0.1658 0.2214
Lomax -85.78 175556 175.881 178.934  176.778 0.2434 14964 60676478 193205250.30023 1.477e-3
GIE -85.84 175.690 176.014 179.068 176.911 0.5972 3.3875 2.6374 3.6035 0.2268  0.0327
Lnormal -79.03 166.040  166.364 169.418 167.261 0.4054  2.3850 1.0074 0.8221  0.2057  0.0679

Based on the results in table 5, the proposed Fuyi distribution fits the infant mortality rate per 1000 live birth for some
countries having the highest p-value= 0.6908. However, in parameter estimation it performed better than all competing
distributions except the Weibull distribution. The performance measure for the proposed distribution, Fuyi distribution,
had the least information criterions among others, except for that of the Weibull distribution where it had its AIC and
CAIC values slightly higher and its BIC and HQIC slightly lower than that of the Weibull distribution.
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Fig. 7 Density, cdf, survival, and TTT plots for the Infant Mortality Rate Per 1000 live Birth for Some Selected Countries
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Fig. 8 PP plots for the Infant Mortality Rate Per 1000 live Birth for Some Selected Countries

Figure 7 and 8 displays the goodness of fit of the selected distribution to the data on the Infant Mortality Rate Per 1000
live Birth for Some Selected Countries.

CONCLUSION

In this article, we have proposed a new one parameter distribution which is more flexible in applications using data sets in
table 2 and 4. The mathematical properties were derived and the proposed distribution parameter was estimated using the
maximum likelihood estimation. Analysis for performance of parameter estimation and goodness of fit was carried by
comparing the proposed distribution with eight other existing distributions. On application to the data on rainfall reported
at the Los Angeles Civic Centre from 1943 to 2018 in the month of March and Infant Mortality Rate Per 1000 live Birth
for some Selected Countries, the Fuyi distribution performed better in parameter estimation and in goodness of fit than the

other competing distribution, except for the Weibull distribution, where it only performed better than in goodness of fit
test.
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