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Abstract 

A new one parameter lifetime distribution named “Fuyi distribution” for modeling lifetime data has been introduced. 

Some important mathematical properties of the proposed distribution including its shape, moments, skewness, kurtosis, 

coefficient of dispersion, index dispersion, quantile function, stochastic ordering, Bonferroni and Lorenz curves, moment 

generating function, characteristics function, distribution of ordered statistics, Renyi entropy measure, survival and hazard 

rate function, stress-strength reliability have been discussed. The estimation of its parameter has been discussed using 

maximum likelihood estimation. The usefulness and the applicability of the proposed distribution have been discussed 

and illustrated with two real lifetime data sets from medical science and environmental. 
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INTRODUCTION 

Distribution theory and modelling plays a significant role in diverse fields such as; in medical science, engineering, 

economic and other science related areas. The need for the development of new distributions has become a necessity in 

this present ever evolving world, as different events are being carried out and these events generates data that needs to be 

studied for future insight. 

Some data take shapes that may not be properly modelled by already existing probability distributions, thereby 

demanding the need for the modification/advancement of already existing probability distribution or the development of 

new probability distribution respectively. Another important key for modelling and analyzing data is the hazard rate or 

failure rate. Researchers such as Marshall, A.W. & Olkin, I. (2007) proposed a one parameter life time distribution having 
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probability density function called the exponential distribution and it is used to model data with constant hazard rate 

function. To overcome the difficulty of the exponential distribution to model data with non-constant hazard rate, the 

following distributions were developed, for example; Ghitany M.E., Atieh B., & Nadarajah, S. (2008) proposed a new 

distribution by exploring a two-component distributions to obtain a one parameter distribution called the Lindley 

distribution with an increasing hazard rate function using the exponential distribution with scale parameter  and a Gamma 

distribution having shape parameter 2 and scale parameter  with mixing proportion 
1





p , Padgett W.J. (2011) 

proposed a two parameter distribution called the Weibull distribution used to model data with increasing hazard rate 

function, Rama Shanker (2016) proposed a one parameter distribution called the Aradhana distribution also using the 

three-component distribution by mixing the Exponential distribution with scale parameter , a Gamma distribution with 

shape and scale parameter 2 and   , and a Gamma distribution with shape parameter 3 and scale parameter    

respectively with theirs mixing proportion of 
𝜃2

𝜃2+2𝜃+2
,

2𝜃

𝜃2+2𝜃+2
, 𝑎𝑛𝑑 

2

𝜃2+2𝜃+2
. Shukla KK. (2018) developed a one-

parameter distribution called the Pranav distribution from two distributions namely; Exponential distribution with scale 

parameter  and Gamma distribution having shape parameter 4 and scale parameter  . Shanker R, and Shukla KK 

(2017) introduced a one-parameter distribution called the Ishita distribution based on a two-component mixture of the 

Exponential distribution having a scale parameter   and a Gamma distribution having a shape parameter 3 and scale 

parameter   with mixing proportion 
23
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p , Kumar Devendra. (2017). introduced a two-parameter lifetime 

distribution named the Burr type XII distribution with some statistical properties, Lomax K.S. (1954)  introduced a two-

parameter distribution named Lomax distribution with an decreasing hazard rate function for modelling life time data, 

Rama Shanker (2015) studied a one-parameter distribution called the Akash distribution based on a two-component 

mixture of an Exponential distribution with scale parameter   and a Gamma distribution having a shape parameter 2 and 

a scale parameter   with a mixing proportion of 
1





p , other distribution introduced  by mixing the exponential 

distribution and the gamma distribution are; the Rama distribution by Rama Shanker (2017), the Shanker distribution by 

Rama Shanker (2015), the Hamza distribution by Ahmad, Aijaz & Jallal, Muzamil & Ain, S Qurat & Tripathi, Rajnee. 

(2020). 

There are some other existing distributions developed by transforming or modifying the already existing distributions, 

distributions such as; the Inverse and Inverse power Ishita by Shukla, K.K. (2021) and Frederick, A. O., Osuji, G.A., & 

Onyekwere, C.K. (2022) respectively, the Inverse and inverse power Hamza distribution by Okpala, I.F., Obiora-Ilouno, 

H.O., Omoruyi, F.A. (2023) and Omoruyi, Frederick & Chrisogonus, Onyekwere & Udofia, Edidiong & Florence, Ejiofor 

& Chukwunenye, Victor. (2023), the inverse power Rama by Chrisogonus K.O., George A.O., Samuel U.E. (2020), the 

new exponentiated Weibull distribution by Pal, Manish & Ali, M. & Woo, Jungsoo. (2003), a new variant of Rama 

distribution with simulation study and application to real life data by Omoruyi, F.A., Omeje, I.L., Anabike, I.C., & 

Obulezi, O.J. (2023), exponential inverse exponential by Pelumi Emmanuel Oguntunde, Adebowale Olusola Adejumo, 

and Ebahoro Alfred Owokolo (2017), the generalized inverted exponential distribution by Abouammoh, A.M. and 

Alshingiti, A.M. (2009), etc.  In this paper, a new one-parameter continuous distribution having its probability density 

function (pdf)  
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is proposed and we call this distribution, Fuyi Distribution. This distribution was developed due to the motivation of 

creating a distribution that will best fit a data during modelling, possibly the data may have already had other existing 

distributions that could already model it. But since the aim of every future event is to attain minimal error during 

forecasting, we hope to obtain a distribution that could perform better than some existing distribution, to obtain the 

mathematical properties of the proposed distribution.  

The pdf (1.1) is a mixture of three distribution, Exponential distribution with scale parameter  , Gamma 

distribution with shape and scale parameters 7 and   respectively, and Gamma distribution with shape and scale 

parameter 3 and   respectively. The mixture is of the form 
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andppp are the mixing proportion such that, 

1321  ppp . The cumulative density function is given as 
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Fig. 1a: pdf plot of 𝑋~𝐹𝐷(𝑥, 𝜃)                                  Fig. 1b: pdf plot of 𝑋~𝐹𝐷(𝑥, 𝜃) 

 
Fig. 2a: cdf plot of 𝑋~𝐹𝐷(𝑥, 𝜃)                                  Fig. 2b: cdf plot of 𝑋~𝐹𝐷(𝑥, 𝜃) 

 

STATISTICAL PROPERTIES OF FUYI DISTRIBUTION 
 

Moment 

The rth non-central moment of a Fuyi random variable X is given as 
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Mean 

The arithmetic mean is obtained from equation (2.1) above by substituting r = 1 
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Other useful non-central moments 

The 2nd, 3rd and 4th non-central moment are obtained from equation (2.1) by substituting r = 2, r = 3, and r = 4 

respectively 
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Useful central moments 

The 2nd, 3rd and 4th central moments are respectively  
2,
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Coefficient of skewness  

The coefficient of skewness of Fuyi distribution is given as 
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Coefficient of kurtosis 

The coefficient of kurtosis of Fuyi distribution is given as 
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Coefficient of variation 

The coefficient of variation of Fuyi distribution is given as 
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Index of dispersion 

The index of dispersion of Fuyi distribution is given as 
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Quantile Function 

The q quantile of Fuyi distribution is obtained using     qxXPxF qq  for 10  q . Replace x with qx in the cdf 

of Fuyi distribution and equate to q 
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Stochastic Ordering of Fuyi Distribution 

Let  1~ FX  and  2~ FY . If  1 > 2 , then YX lr hence YX hr , ,YX mlr and YX st  

Proof: 
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Taking natural log of eqn. 2.17, will yield 
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Differentiating the natural log of eqn. 2.17, will yield 
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Bonferonni and Lorenz Curve 

The Bonferonni and Lorenz curves are defined as 
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Maximum likelihood estimation of the Fuyi distribution parameter 

Let nxxxx ,...,,, 321  be a random sample drawn from a Fuyi distribution, then the likelihood function is given as 
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Taking natural log of eqn. 2.22 will yield 
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Differentiating the natural log of eqn.2.22 will yield 
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The MLE is implemented using Newton-Raphson’s numerical iterative method since it has no closed-form solution. 

 

Moment generating function of Fuyi distribution 

The moment generating function of a X ∼ Fuyi (θ) is given by 
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We have that; 
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Characteristic function of Fuyi distribution 

The moment generating function of a X ∼ Fuyi (θ) is given by 
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Distribution of the order statistics 

Suppose nxxxx ,...,,, 321  is a random sample of  ;rX nr ,...,3,2,1  are the 
thr  order statistics obtained by arranging 

rX  in ascending order of magnitude   rXXXX  ...321 and  rXXXXX ,...,,,min 3211  , 

 rn XXXXX ,...,,,max 321  then the probability density function of the rth order statistics is given by 
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where  .f  and  .F  are the pdf and cdf of Chris-Jerry distribution respectively. Hence, we have 
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The pdf of the largest order statistics is obtained by setting nr   
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Information measure and asymptotic behaviour of Fuyi distribution 

Entropy is the quantity of uncertainty or randomness in a system. It is an information measure for non-negative 1 . 

The Rényi Entropy for Fuyi distributed random variable X is 
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For ω → 1, we have the special case of Shannon Entropy  .xRS  
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The asymptotic behaviour of the Fuyi distributed random variable is investigated by taking the limit of the pdf as x → 0 

and as x  →∞. 
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Survival function and failure rate 

Given a continuous distribution with pdf and cdf in equations (1.1) and (1.2), the survival function is given by 
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Notice that for Fuyi distribution the survival function   ;xSFD = 1 as x → 0 and  ;xSFD  = 0 as x →∞. Also, the 

failure rate  ;xhFD , an important tool in reliability measure and engineering is given by 
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For Fuyi distribution, the failure rate exhibits the following behavior;  ,xhFD =
 137 


as x → 0 and  ,xhFD =0 

as x →  . 

 
Fig. 3a: survival rate plot of 𝑋~𝐹𝐷(𝑥, 𝜃)                 Fig. 3b: survival rate plot of 𝑋~𝐹𝐷(𝑥, 𝜃) 



 

 
34 

 
Fig. 4a: hazard function plot of 𝑋~𝐹𝐷(𝑥, 𝜃)        Fig. 4b: hazard function plot of 𝑋~𝐹𝐷(𝑥, 𝜃) 

 

The Figs. 3a and 3b show the plots of survival function and figs 4a and 4b are the plots of the hazard function for various 

parameter values. 

 

Stress-Strength reliability 

An examination of the Stress-Strength Reliability of Fuyi distribution is also carried out. The stress-strength reliability is 

used to measure the life of a component that possesses random strength X and subjected to random stress Y. In a case, 

where the applied stress Y is higher than the strength x of the system, that is X < Y, the component fails. For the 

component to function efficiently, the strength of the system must be greater than the stress applied to it. Hence, R = P 

(Y< X) is the measure of the reliability of a component and find application in aging of concrete pressure vessels 

deteriorating of rocket motors, ceramic components and so on.  

Given that X and Y are independent random variables denoting strength and stress of a component. We assume 

further that X and Y follow Fuyi distribution with pdf given in equation (1.1), with parameter 𝜃1 and 𝜃2 respectively. 

Then, the stress-strength reliability is obtained as follows: 
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Applications to Lifetime Data 

Fuyi distribution has been fitted to some real lifetime data sets and it gives better fit than Log Normal, Burr XII, Weibull, 

Gamma, Lomax, New Exponentiated Weibull distribution, Extended Inverse Exponential, and Generalized inverted 

exponential distributions. 
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Table 1 List of one-parameter distributions For Comparisom 

Distribution 𝒇(𝒙) 𝑭(𝒙) 

Proposed Fuyi 

Distribution 

𝜃(𝜃13𝑥6 + 360𝜃5𝑥2 + 720)𝑒−𝜃𝑥

720(𝜃7 + 𝜃3 + 1)
 

1-

[1 +

𝜃4𝑥(𝜃
9𝑥5+6𝜃8𝑥4+30𝜃7𝑥3+120𝜃6𝑥2+360𝜃5𝑥

+360𝜃𝑥+720𝜃4+720
)

720(𝜃7+𝜃3+1)
] 

Burr XII 

Distribution 
𝑐𝑘

𝑥𝑐−1

(1 + 𝑥𝑐)𝑘+1
 1 − (1 + 𝑥𝑐)−𝑘 

Lnormal 

Distribution 

1

𝑥𝜎√2𝜋
𝑒𝑥𝑝 (−

(𝐼𝑛𝑥 − 𝜇)2

2𝜎2
) 

1

2
[1 + 𝑒𝑟𝑓 (

𝐼𝑛𝑥 − 𝜇

𝜎√2
)] 

GIE Distribution 
𝛼𝜆

𝑥2
(𝑒𝑥𝑝 [−

𝜆

𝑥
]) (1 − 𝑒𝑥𝑝 [−

𝜆

𝑥
])
𝛼−1

 1 − (1 − 𝑒𝑥𝑝 [−
𝜆

𝑥
]
𝛼

) 

Lomax 

Distribution 
𝛼(1 + 𝑥 𝜆⁄ )

−(𝛼+1)

𝜆
 1 − (1 + 𝑥 𝜆⁄ )

−(𝛼+1)

 

Gamma 

Distriibution 

𝜃𝛼𝑥𝛼−1

Γ(𝛼)
𝑒−𝜃𝑥 

1

Γ(𝛼)
𝛾(𝛼, 𝜃𝑥) 

Weibull 

Distribution 

𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒
−(𝑥 𝜆⁄ )

𝑘

 1 − 𝑒
−(𝑥 𝜆⁄ )

𝑘

 

Extended 

Inverse 

Exponential 

Distribution 

(
𝛼𝜃

𝑥2
) 𝑎 (

1

(1 − 𝑎)2
) 𝑒𝑥𝑝(−𝛼(𝑎 (1 − 𝑎)⁄ )) 

Where, 𝑎 = 𝑒𝑥𝑝(−𝜃 𝑥⁄ ) 

1 − 𝑒𝑥𝑝(−𝛼(𝑎 (1 − 𝑎)⁄ )) 

Where, 𝑎 = 𝑒𝑥𝑝(−𝜃 𝑥⁄ ) 

NEX 

Distribution 
𝛼𝛾𝜆𝛾𝑥𝛾−1[1 − 𝑎]𝛼−1𝑎 

Where, 𝑎 = 𝑒𝑥𝑝{−(𝜆𝑥)𝛾} 
[1 − 𝑒𝑥𝑝{−(𝜆𝑥)𝛾}]𝛼 

 

The application is on rainfall reported at Los Angeles Civic center from1943 to 2018 and studied by Mustapha nadar and 

faith kizilaslan (2015), the data is in table 1  

 
Table 2 The Rainfall reported at the Los Angeles Civic Centre from 1943 to 2018 in the month on March 

4.55   2.47   3.43   3.66   0.79   3.07   1.40   0.87   0.44   6.14   0.48   2.99   0.56   1.02     

5.30   0.31   0.57   1.10   2.78   1.79   2.49   0.53   2.50   3.34   1.49   2.36   0.53   2.07     

3.78   4.83   1.81   1.89   8.02   5.85   4.79   4.10   3.54   8.37   0.28   1.29   5.27   0.95 

0.26   0.81   0.17   5.92   7.12   2.74   1.86   6.98   2.16   4.06   1.24   2.82   1.17   0.32 

4.32   1.47   2.14   2.87   0.05   0.01   0.35   0.48   3.96   1.75   0.54   1.18   0.87   1.60 

0.09   2.69 

 

The determiners of model performance used here are the Akaike Information Criterion, Corrected Akaike Information 

Criterion, Bayesian Information Criterion, Hannan-Quinn Information Criterion, negative Log-Likelihood, Cramer Von 

Mises (W*), Anderson Darling (A*), While the Kolmogorov-Smirnov (K-S) statistic and the p-value determines the 

fitness of the distribution to the data. 

 
Table 3 Analytical measures of performance and fitness using the Rainfall reported Data at Los Angeles 

Distr.        NLL          AIC        CAIC         BIC         HQIC        W
*
         A

*
            𝜽                𝜷            K-S          P-value 

Fuyi           -137.42        276.836      276.893     279.112       277.742        0.047      0.302      0.4484               -             0.0650         0.9212 

Burr XII    -146.66        297.326      297.499     301.879       299.139        0.271      0.631       1.5858          0.7163       0.1418         0.1108 

NEX          -137.08        278.151      278.325     282.704       279.963        0.057      0.353      0.1774           1.2550       0.1844         0.0150 

EIE            -140.00        276.940      277.114     281.493       278.753        0.037      0.245      0.0034           0.0083       0.0795         0.7533 

Weibull     -135.87        275.816      275.991     280.370       277.630        0.029      0.187       1.1183          2.5477       0.0721         0.8485 

Gamma     -136.17        276.347      276.521      280.900      278.160         0.036      0.234       1.1373         2.1543        0.0766        0.7914 

Lomax      -136.53        277.061       277.235     281.615      278.874         0.037      0.236     30111970    12287832    0.0794         0.7534 

GIE           -183.70        371.401       371.575     375.955      373.214         1.146      6.656      0.4521           0.1898      0.2663        7.347e-05 

Lnormal    -145.70        296.367       296.541     300.921      298.180         0.227      1.444      0.3756            1.3388      0.1102        0.3461
 

 

Based on the results in table 3, the proposed Fuyi distribution fits the rainfall reported data at Los Angeles Civic Centre 

having the highest p-value= 0.9212. However, in parameter estimation it performed better than all competing distributions 

except the Weibull distribution. The performance measure for the proposed distribution, Fuyi distribution, had the least 

information criterions among others, except for that of the Weibull distribution. 
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Fig. 5 Density, cdf, survival, and TTT plots for the Rainfall reported at the Los Angeles Civic Centre 

from 1943 to 2018 in the month of March 
 

 
Fig. 6 PP plots for the Rainfall Data reported at the Los Angeles Civic Centre from 1943 to 2018 in the month of March 
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Figure 5 and 6 displays the goodness of fit of the selected distribution to the data on the rainfall reported at the Los 

Angeles Civic Centre from 1943 to 2018 in the month of March. The next data is on the infant mortality rate per 1000 live 

birth for some selected countries Onyekwere, C.K., Okoro, C.N., Obulezi, O.J., Udofia, E.M., & Anabike, I.C. (2022). 

 
Table 4 Infant Mortality Rate per 1000 live birth for some selected Countries 

56     10     22     3     69     6     7     11     4     4     19     13     7     27     12      3     4     11     84     27   

25      6      35    14    11    12    6         

 

In Table 5, we fit the Fuyi distribution including some other distributions to the data on the infant mortality rate per 1000 

live birth for some selected countries. 

 
Table 5 Analytical measures of performance and fitness using the Infant Mortality Rate per 1000 live Birth 

Distr.        NLL          AIC       CAIC        BIC         HQIC          W
*
          A

*
           𝜽                𝜷         K-S          P-value 

Fuyi           -70.78        143.552      143.658     145.242      144.163        0.1185    0.7720      1.9611               -          0.1126         0.6908 

Burr XII     -92.86       189.719      190.043     193.097       190.940       0.6770    3.7911      3.0168          0.3077      0.3232         4.71e-4                        

NEX          -71.34        146.678      147.002     150.056       147.899       0.1672     1.0583      0.0183          2.7195      0.1310        0.4994               

EIE            -79.68        163.350      163.675     166.728       164.572       0.4130     2.4340      0.9779          2.2108      0.2210        0.0403 

Weibull     -69.56        143.116      143.441     146.494       144.338        0.1183     0.7705      2.5055         3.5164      0.1187        0.6256   

Gamma     -73.55        151.275      151.598     154.653       152.497        0.2413      1.4844      3.1673        0.9847      0.1658        0.2214 

Lomax      -85.78        175.556      175.881     178.934       176.778        0.2434      1.4964     60676478    19320525 0.30023      1 .477e-3  

GIE           -85.84        175.690      176.014     179.068      176.911         0.5972      3.3875     2.6374          3.6035      0.2268       0.0327 

Lnormal    -79.03        166.040      166.364     169.418      167.261        0.4054       2.3850     1.0074          0.8221      0.2057       0.0679  

 

Based on the results in table 5, the proposed Fuyi distribution fits the infant mortality rate per 1000 live birth for some 

countries having the highest p-value= 0.6908. However, in parameter estimation it performed better than all competing 

distributions except the Weibull distribution. The performance measure for the proposed distribution, Fuyi distribution, 

had the least information criterions among others, except for that of the Weibull distribution where it had its AIC and 

CAIC values slightly higher and its BIC and HQIC slightly lower than that of the Weibull distribution. 

 

 
Fig. 7 Density, cdf, survival, and TTT plots for the Infant Mortality Rate Per 1000 live Birth for Some Selected Countries 
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Fig. 8 PP plots for the Infant Mortality Rate Per 1000 live Birth for Some Selected Countries 

 

 

Figure 7 and 8 displays the goodness of fit of the selected distribution to the data on the Infant Mortality Rate Per 1000 

live Birth for Some Selected Countries. 

 

CONCLUSION 

In this article, we have proposed a new one parameter distribution which is more flexible in applications using data sets in 

table 2 and 4. The mathematical properties were derived and the proposed distribution parameter was estimated using the 

maximum likelihood estimation. Analysis for performance of parameter estimation and goodness of fit was carried by 

comparing the proposed distribution with eight other existing distributions. On application to the data on rainfall reported 

at the Los Angeles Civic Centre from 1943 to 2018 in the month of March and Infant Mortality Rate Per 1000 live Birth 

for some Selected Countries, the Fuyi distribution performed better in parameter estimation and in goodness of fit than the 

other competing distribution, except for the Weibull distribution, where it only performed better than in goodness of fit 

test. 
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