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Abstract 

Fog computing is a notion that merges the benefits of cloud and edge devices to furnish excellent services, diminish 

delay, offer mobility assistance, multi-user access, and other characteristics that maintain current computing systems. It is 

also identified as fogging or fog networking. This write-up introduces a numerical structure for dissimilar resource 

allocation via task-driven usefulness functions based on the combination of Mayfly and Reformed Multi-Objective 

Particle Swarm Optimization (RMPSO), referred to as MRMPSO. An idea with the organization of multi-goal function is 

brought and projected to prior to a fresh and innovative optimization set of rules for updating the rate of the fundamental 

mayfly set of rules. The RMPSO with function of the crossover series permits each and every mayfly adopting its non-

public conduct to make it quicker with the organization information. In multi-level mayfly set of rules, speed is updated, 

based at the offspring’s first-class function of the mayfly. At the identical time, it is brought with prominence to offer 

higher resource sharing characteristics. This framework includes cloud computing, mobile cloud computing (MCC), and 

mobile edge computing (MEC), with the aim of enhancing the QoS (quality of service) among terminal devices and the 

cloud. Taxonomy of MCC is proposed based on current research in the field, covering confidential challenges, data 

management, operational and service issues. The review identifies challenges and potential applications in cloud 

computing, with security, privacy, communication and application challenges being prominent in addition to the academic 

contributions. The article also explores potential applications of MCC, such as healthcare, smart city, and agriculture 

applications. 

 

Keywords 

Mobile cloud, Mayfly, PSO, Hybrid optimizer, Resource sharing, Service-oriented functions 

 

INTRODUCTION 

The latest developments in mobile devices and cloud computing platforms have led to the emergence of MCC, a novel 

approach to mobile services and applications that are expected to have a significant influence on our daily lives. Initially, 

MCC was primarily concerned with enhancing the ability of mobile nodes to compute and store data through delegating 

tasks to more robust cloud data centers [1]. 

The initial type is referred as agent-client-based mobile cloud architecture [2, 3]. It relies on a centralized data 

center to exclusively provide resources, such as CPU and storage, to mobile devices and carry out the required operations 

to execute a service. In this configuration, mobile devices solely use cloud resources; they make no service contributions 

[4]. The next type of architecture is known as a collaboration-based mobile cloud architecture, in which the central mobile 

devices and data centers collaborate by sharing their assets to provide services. 

Such designs can differ greatly and are particularly potent because of the vast number of devices available to 

participate in the cloud. This concept is also known as fog computing [5], which broadens the cloud computing model to 

the network's edge. The cooperative-based mobile cloud is currently the most fascinating and noticeable research field of 

MCC. The latest advancements in the proliferation and variety of mobile devices have introduced numerous dissimilar 

assets into local networks, such as efficient processors, rapid Long Term Evolution (LTE) connections, voluminous 

storage, and various sensor data. These assets pertain to computational, communicative, storage, and informative 
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resources, respectively. Taking advantage of these different resources when possible permits cooperative cloud computing 

to function on advanced mobile devices, rendering it a resilient foundation for accommodating a diverse array of 

applications. 

There are still more technical challenges that must be addressed with the aim of fully implementing the 

cooperative mobile cloud. This study centers on the primary issue of how to effectively coordinate the sharing of diverse 

resources among different nodes. Traditional methods of facilitating resource sharing typically focus on coordinating 

tasks, such as numerical computations or data downloads, without taking into account the specific services being provided 

[2, 3]. In such task-driven sharing, diverse resources are frequently evaluated using varying scales or units (e.g. 

bandwidth, power, latency etc.), and scheduling tasks are assigned to optimize specific metrics based on these differing 

scales or units.  

A common goal is to create methods that allow for energy-efficient CO with low latency. For instance, [5] 

presents an optimized approach for a single-user MEC, where the energy consumption is minimized by jointly controlling 

CPU cycles and the decision to offload based on the estimation deadline necessity. In [6], a joint allocation of 

computation and radio resources is proposed for a multi-user MEC with respect to each deadline limitation while 

minimizing the total amount of mobile energy use. The best method in [6] is based on assumptions that might not hold 

true in real-world situations, such as a set number of mobiles, synchronous task arrival, and identical and deterministic 

computing deadlines. 

Several recent studies attempt to address the boundaries by lessening the aforementioned assumptions. The text in 

[7] investigates an MEC scenario that is asynchronous, wherein mobile devices experience different times for input data 

arrival and computation deadlines. Meanwhile, [8] establishes multi-user scheduling for MEC with random user arrivals 

using reinforcement learning and the Markov decision process. [9] studies the probabilistic deadline constraint, which 

guarantees that the probability of task queue length exceeding the allowable limit is less than the tolerable violation 

probability. This constraint is crucial in mission-critical applications. The researchers approximate the constraint to a 

generalized Pareto distribution through the application of the extreme value theory. This approximation makes it possible 

to determine a dynamic offloading decision and resource allocation. Furthermore, [10] and [11] deal with computation 

uncertainty, where the process of computation is random instead of deterministic, and the type and amount of necessary 

resources are unknown at the start.  

In [10], the method of real-time preloading is suggested to reduce the projected power usage when dealing with a 

stochastic computing procedure that is designed as a Markov chain. In [11], the issue of determining whether to offload is 

tackled without depending on any specific details about the intended applications, like the number of CPU cycles, the 

amount of data to be uploaded or downloaded, by utilizing a chance restraint programming tool. 

The existing investigations discussed above concentrate on enhancing the offloading of a computation task that 

contains user-specific data (USD) from mobile devices to the edge. These studies assume that the service-specific data 

(SSD) is already pre-installed. For instance, in the case of augmented reality (AR), visual recognition and the object 

database models must be organized at the edge to improve the classification or object recognition outcomes in the image 

[12]. There is an assumption valid if the services that can operate at the edge are restricted and well-anticipated. 

Nonetheless, a wide a diverse range of computing services ought to be requested from the edge, encompassing both 

conventional light services and intensive services that utilize the latest advancements in machine learning [13, 14]. 

Installing SSDs in advance for all conceivable services is not feasible. A novel approach is therefore necessary for the 

acquisition of both (SSD) and (USD). 

Sharing that is focused on task for this particular service reduces the amount of time it takes to process each task. 

Nevertheless, the navigation service possesses a unique characteristic whereby users cannot utilize the service until they 

have finished downloading task, even though the route calculation takes only a few hundred microseconds. In this 

scenario, it is not logical to optimize computational resources as doing so could possibly lead to a waste of resources. 

Instead, it would be more beneficial to optimize a utility function that is oriented towards the service, which can better 

encompass the advantages of such optimization. 

This article presents a framework and structure for sharing heterogeneous resources based on task-oriented utility 

functions. As varying resources are often measured differently, a unified system is offered that maps all quantities to time 

resources. The overall contributions of our MRMPSO based task scheduler and resource sharing is being pointed out here. 

 Our proposed resource sharing algorithm combines the Mayfly algorithm with the Reformed PSO (RMPSO) skill, 

referred to as MRMPSO.  

 The mayfly algorithm minimizes the search space, while the RMPSO identifies the improved response.  

 The RMPSO algorithm selects the best global (gbest) a particle with a close point-to-line distance.  

 This method elects ‘gbest’ particle candidates using the minimum distance from a point-to-line, while this scheme 

is used to recognize the improved response, in order to reduce the search space.  

 The proposed hybrid optimized algorithm achieves an efficient average load and improves crucial factors like 

optimum resource usage and job response time.  

 The resulting mobile cloud has the potential to be a robust platform for mobile services and cloud applications.  

 Our simulation results demonstrate that the MRMPSO model performs effectively compared to other methods. 
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Following is a projected outline of the upcoming sections. In Section 2, pertinent studies are covered. The proposed 

methodology of applied algorithm is outlined in Section 3; the modified mayfly and reformed form of PSO sketched in 

Section 4 and they are assessed in Section 5. At last, the conclusions with the future possibility are outlined in Section 6. 

 

RELATED APPROACHES 

Cloud computing (CC) is referred to as a shared virtual distributed computing system among its clients across a wide 

geographical area using the internet. Multiple cloudlets can request and utilize the resources simultaneously. The 

centralized resource can be accessed by clients from anywhere and at any time through the internet. 

The allocation and management of cloudlets on virtual machines (VMs) in an efficient manner to reduce 

computational costs is referred to as load management. This technique is employed to minimize the time of transfer, 

response, waiting, and execution time, as well as operational expenses.  

Various approaches have been explored in existing research to optimize allocation and task scheduling on MCC 

with altered objectives. In order to minimize energy consumption, it is crucial for mobile apps to provide complex high-

performance features. The energy-intensive components of mobile devices include I/O processing and network 

communications [15]. To address this issue, offloading resource-intensive tasks to the cloud is an efficient way to reduce 

energy usage. By augmenting mobile computation, intensive computations can be delivered to mobile users, which help 

to conserve device energy and extend battery life. Literature has proposed several energy-based models, such as remote 

resource cloning for mobile devices [16], code offloading and migration [17], network profiling & its applications [18], 

decomposition, reusability & their applications [19, 20]. 

The handling of extensive data files can cause a direct drain on the device's energy on mobile devices. 

Conversely, the amount of device idling time, overall cost, and processing time may all raise as a result of massive data 

file transfers across mobile networks. The literature indicates a heightened focus on resource scalability and elasticity. 

Optimization models for resource dependent MCC are concentrated on cloud resource scaling and virtual machine 

parallelism [21], segmentation of workflow-aware execution partitioning, hybrid MCC deployment, and elastic 

applications [22]. The importance of consuming intelligent and scalable context-aware systems [23] is emphasized for 

mobile applications that can manage the dynamic cloud mobile environment. 

Nan et al. [24] investigated the difficulties of data-intensive mobile apps for the purpose of optimizing costs. 

They emphasized the importance of cost optimization to enhance user quality of service (QoS). To achieve this, an 

efficient cost optimization model is needed that minimizes monetary costs while enhancing customer QoS. A middleware 

for MCC with three tiers, which presents programmers with multiple computing choices, is introduced depending on the 

cost model of the application and the decision maker for offloading [25]. Despite taking into account the size of task data 

to create a streamlined execution plan for application tasks, this model fails to accurately depict the scheduling scenario of 

data-intensive applications on MCC due to the small size of the data. 

On the other hand, energy-based MCC solutions mainly focus on optimizing device energy by migrating 

application code complexity. However, they do not take into account context variables like the dimensions of input data, 

network capacity, and associated data transfer expenses must be considered. Enhancing mobile network performance 

leads to better application response time and energy utilization optimization [26]. Application response time and 

availability can be enhanced by outsourcing tasks to nearby cloudlets [27]. Determining whether an application should be 

run on a local or remote basis is a challenging job that necessitates ongoing monitoring of network conditions and 

application profiling [19].  

While assigning various workloads, load allocation can be done through either dynamic or static scheduling 

techniques [28]. Bio-inspired algorithms are utilized in dynamic techniques to schedule the workloads. CC employs 

swarm-based algorithms to assign loads to consecutive objects based on the velocity and location of particles. Different 

load balancing techniques have their own advantages and disadvantages. The round-robin algorithm is integrated into the 

scheduling model which works on the basis of meta-heuristic models. After several iterations and fitness values, the 

roulette selection model is determined based on random scheduling. Static algorithms are not categorized under meta-

heuristic techniques used for managing the load in the cloud. When compared to rudimentary approaches like FCFS (First 

Come First Serve) and Round Robin scheduling, the operational cost incurred by this technique is low.  

An algorithm named PSO has been introduced as a meta-heuristic approach [29]. This technique employs a group 

of particles that mimic the behavior of birds from one source of transition to other. The optimal location in the search 

space is determined based on the velocity of the preceding particle. In [30], various scheduling approaches such as GA, 

Min-Min, SA, Tabu Search, Max-Min, etc. are designated using static and alternate models. 

This study focuses on the correlation between the Ant Colony Optimization (ACO) techniques. The discussion 

revolves around the role of ants in finding food, as the name suggests. It proposes the implementation of a PSO algorithm 

to allocate resources in the cloud on VM. The operation of this optimizer [31] has presented that leads to enhanced 

solutions.  

In [32] literature, a PSO scheme based on constraints was utilized to distribute tasks across sequential nodes. The 

PSO algorithm has outlined in [33] collected works when implemented on a CC platform. The fitness function evaluates 

the most suitable particle, and its velocity is determined by the particle's pbest and the swarm's gbest. The MCC can 

include the latest swarm approach, mayfly, which boasts unique optimization capabilities. The position of the crossover 
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collection, along with the distribution function, allows each mayfly to adopt its own behavior and speed up with group 

information [34-36]. It lowers the overall calculation cost in comparison to earlier works and related techniques. 

The primary shared problem among the aforementioned studies is the disregard for the magnitude of data and intricacy of 

MCC application in MCC structures. To address this limitation, a contemporary optimization method is proposed for 

running data-heavy MCC applications on the hybrid-optimized platform. 

 

METHODOLOGY USED 

The plan is to introduce a framework for optimizing MCC that is focused on data. This will be done in a hybrid-MCC 

environment that utilizes three different types of resource allocation: cloudlet, public cloud, and mobile device. Cloudlet 

is responsible for providing computation services to mobile clients that require sensitive requests. Accessible resources 

got through Wi-Fi or cellular networks. The public cloud affords resources that are scalable and powerful. For mobile 

devices, it is assumed that they are operating within the restrictions of energy and wireless interfaces, they can carry out 

local computation and storage. 

 
Fig 1. MRMPSO blocks with mobile cloud data 

 

The suggested optimization framework for offloading comprises of modules that offer context monitoring, decision-

making, and application execution services. The framework is depicted in Fig. 1. 

The task of the context monitoring module is to create a profile of context parameters during runtime and assist 

the decision maker in making decisions based on energy and monetary cost estimations. The framework provides three 

profilers, namely, the device profiler for energy consumption, the network monitor for mobile network information 

availability, and the application profiler for recording heuristic data about application execution, taking into account 

network bandwidth context information. 

The module responsible for decision-making is a QoS enhancer that endeavors to identify the optimal plan for 

executing applications within a solution space where the cost estimator evaluates each solution. The determination is 

founded on the user's QoS and estimated time for execution, along with the overall energy consumption and financial 

expense of the device. 

The execution module is in charge of executing the application execution plan received from the decision maker. 

It comprises three primary components: the resource manager that handles resource access for storage and computation, 

the communication manager that oversees the communication networks between resources, and the task manager that 

executes multiple application tasks. 

Scheduling tasks on virtual machines with limited resources is a challenging problem that requires optimizing an 

objective function while adhering to specific constraints. In the context of cloud computing, the effectiveness of task 

scheduling is evaluated using various system performance metrics. These optimization criteria can be broadly categorized 

into two types: those that cater to the demands of cloud users and those that cater to the demands of cloud service 

providers. The former includes user demand criteria like makespan (MS) and total execution time (TET), while the latter 

includes provider demand criteria like degree of imbalance (DI) and energy consumption. In single objective task 
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scheduling, only one criterion is taken into account, whereas in multi-objective criteria, two or more parameters are 

considered as objectives [36, 37]. 

A blend of firefly and enhanced particle swarm optimization (IPSO) algorithm are involved to achieve load 

balancing and task scheduling in a cloud computing setup. The IPSO algorithm's stochastic operators render it susceptible 

to the initial population. The algorithm's convergence is notably influenced by the improper selection of the initial 

population. To counter this, we have employed the firefly algorithm to initialize the IPSO [38, 40]. 

The combination of two optimizers of mayfly and reformed multi-objective PSO is utilized effectively to enhance the 

essential measures like proper resource usage and response time of the tasks. Initially, the mayfly algorithm is used in the 

decision module for making the best decision and this is further combined with the new model of PSO in the execution 

module for the better accomplishment of complete progress. Thus, the MRMPSO is utilized for the multi-purpose 

progress in resource sharing, task scheduling, and decision making. 

 

PROPOSED MODEL 

The hybrid optimizer in the proposed module, namely PSO and mayfly are combined with some modifications in their 

progress to assess the best optimum value for task scheduling and decision making in multiple levels. These optimization 

processes are described as follows. 

 

Mayfly concept 

A new and innovative optimization technique is presented in the form of the Mayfly optimization method [34-36]. 

Drawing inspiration from the mating and fighting behaviors of mayflies, such as their wedding dance, random movement, 

group gathering, mutation, and mayfly crossover, this algorithm was developed. The standard Mayfly algorithm operates 

in the following manner.  

 Fix the speed settings and initialise the male and female mayfly populations. 

 Calculate the fitness value and sort the outcomes to obtain sbesti and cbest.  

 Adjust the locations of the male and female mayflies in turn before mating. 

 Once fitness has been determined, update sbest and cbest.  

 Verify whether the stop condition has been met; if so, exit and output the result; if not, repeat steps 3 through 5. 

Both mayfly collections are initially created using random representations of the populations of male and female mayflies, 

respectively [35]. Each mayfly is randomly placed as a prospective candidate solution represented by the vector p = 

(p1,…,pd), with dimension d, and after that, its performance is evaluated using f(x), an objective function that has been 

predetermined. Each mayfly's flying direction is a dynamic combination of social flying and personal experiences. A 

mayfly's velocity, mv= (m𝑣1,…,m𝑣𝑑), is shown as a shift in position. 
 

Male mayflies 
Male mayflies congregate in clusters, and their arrangement is fine-tuned through self-experience and observation of their 

peers. If we consider that is the present location of mayfly i in the exploration domain during time step t, the updated 

position is the sum of the velocity at iteration (t+1)
th
 and the position at iteration t

th
, and its positional formula is altered 

as,  

𝑝𝑖
𝑡+1 = 𝑝𝑖

𝑡 + 𝑚𝑣𝑖
𝑡+1  (1)  

in which 𝑝𝑖
𝑡 denotes the mayfly's present location in the searching space i at time step t, 𝑚𝑣𝑖

𝑡+1 velocity in the similar 

location. 

𝑚𝑣𝑖𝑗
𝑡+1 = 𝑚𝑣𝑖𝑗

𝑡 + 𝜎1 e−γ𝑟𝑝
2
(𝑠𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑝𝑖𝑗

𝑡 ) + 𝜎2 e−γ𝑟𝑔
2
(𝑐𝑏𝑒𝑠𝑡𝑗 − 𝑝𝑖𝑗

𝑡 ) (2) 

where 𝑣𝑖𝑗 
𝑡 is the velocity (i) at time step t of mayfly, (𝑖𝑗 = 1,...,𝑛) in dimension j, two constants of positive attraction 𝜎1 

and 𝜎2. s𝑏𝑒𝑠𝑡𝑖 is the mayfly was in its best (i) ever position. Additionally, in eq. (1), the visibility coefficient (γ) fixed is 

used. This is done to reduce a mayfly's ability to reflect light on other flies. 
 

Female mayflies 

With care for fitness function, the best male mayfly should be drawn to the best female. Each mayfly can specifically go 

in the direction of what it perceives to be in the optimal position. Any mayfly in the swarm right now needs to get in the 

ideal posture (cbest). 

The best guy ought to be drawn to the best female while taking fitness into account. Chiefly, each mayfly has the ability 

to move in the direction of its subjective/individual ideal position (sbest). Currently, any mayfly in the swarm must take 

the best location (cbest). 

𝑚𝑣𝑖𝑗
𝑡+1 = {

𝑚𝑣𝑖𝑗
𝑡 + 𝜎2 e−γ𝑟𝑚𝑓

2

(𝑝𝑖𝑗
𝑡 − 𝑞𝑖𝑗

𝑡 ),         𝑖𝑓 𝑓(𝑞𝑖) >  𝑓(𝑝𝑖) 

𝑚𝑣𝑖𝑗
𝑡 + 𝑓𝑙 ∗ 𝑟  ,                                 𝑖𝑓 𝑓(𝑞𝑖) ≤  𝑓(𝑝𝑖)

  (3) 

𝑞𝑖𝑗
𝑡  denotes the position (𝑖) of female fly at step (𝑡) time in 𝑗 dimension. 

 

Mating progress 

The crossover factors represent the mating behavior of both mayflies as follows. Following are both of the children that 

are created with respect to mating, 
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𝑜𝑓𝑓𝑠𝑝𝑟1 = M ∗ 𝑚𝑎𝑙𝑒 + (1 ― M) ∗ 𝑓𝑒𝑚𝑎𝑙𝑒    (4) 

𝑜𝑓𝑓𝑠𝑝𝑟2 = M ∗ 𝑓𝑒𝑚𝑎𝑙𝑒 + (1 ― M) ∗ 𝑚𝑎𝑙𝑒    (5) 

In which, the parents of the male (father) parent and mother are created from female and male, respectively, and 

M is a random number within a predetermined range (as in Eq. (4 & 5)). The beginning velocities of the offspring are set 

to zero. M stands for the Gauss distribution with any random statistic. On the other hand, there is initially a tuning 

problem with the mayfly optimisation. To increase this progress efficiency, a weighted parameter is also added. Finally, 

MO is proposed here to deal with the multi-objective problems. 

 

Reformed mayfly progress 

It is possible to compute the peculiar best position (s𝑏𝑒𝑠𝑡𝑖𝑗), following at step time t+1, by taking equation (1) with 

minimization problems into consideration as, 

𝑝𝑏𝑒𝑠𝑡𝑖 = {
𝑝𝑖

𝑡+1,         𝑖𝑓 𝑓(𝑝𝑖
𝑡+1) >  𝑓(𝑠𝑏𝑒𝑠𝑡𝑖) 

𝑠𝑎𝑚𝑒,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (6) 

where 𝑓:ℝ𝑛→ℝ represents the objective criteria for assessing the quality of the answer. The complete group of male 

mayflies (in swarm) can also be defined as M, the global (topmost) position 𝑔𝑏𝑒𝑠𝑡 at time step t which is designated as, 

𝑔𝑏𝑒𝑠𝑡 𝜖{𝑠𝑏𝑒𝑠𝑡1𝑠𝑏𝑒𝑠𝑡2, … , 𝑠𝑏𝑒𝑠𝑡𝑀 | 𝑓(𝑐𝑏𝑒𝑠𝑡)} 

= min {𝑓(𝑠𝑏𝑒𝑠𝑡1), 𝑓(𝑠𝑏𝑒𝑠𝑡2), … , 𝑓(𝑠𝑏𝑒𝑠𝑡𝑀)}   (7) 

To improve the M parameter, we have implemented the Modified Gaussian (MG) model. By integrating the breeding 

outcomes with this MG model, it can be quickly resolved by adjusting specific aspects of the breeding position 

incorporated in the optimization algorithm. The result in the prompt convergence of the algorithm is preserving the 

attributes of the traditional process. 

𝑅𝐺𝜎(𝑦) =
1

𝜎√2𝜋
𝑒

−1

2
(

𝑥−𝑐

𝜎
)

2

                                               (8) 

In which 𝐺𝜎(𝑦), 𝜎, 𝜃 and c are denoted as Gaussian function of 𝑦 variable, variance, orientation that must be used to 

rotate the function and expected value respectively. The ultimate result attained by combining the RG with the last 

generation is presented in the equation below. To prevent premature convergence, wherein the local optimal value is 

considered superior to the global value, the selected mayfly progeny undergoes mutation by adding the distributed 

random number, RG. The formula for the mutation of mayfly progeny is as follows.  

offsprn = offsprn + ∅{RG}     (9) 

where, ∅ = {1            𝑖𝑓 (𝑚𝑛
𝑖+1 − 𝑚𝑛

𝑖 = 0) 
0              𝑒𝑙𝑠𝑒                             

               (10) 

In the aforementioned equations, the probability factor ∅ is given. The likelihood factor is 1, if the characteristics of this 

mating mn location acquired in the subsequent iteration (i+1) through the utilization of local or global optimal mating 

attitudes are indistinguishable from the characteristics acquired in the previous iteration (i) using local or global optimal 

stances, then the likelihood factor is zero and the response remains the same. 

As a crucial aspect of the collective, the variety of the group has a close association with the early convergence in 

the evolutionary process, the tardy pace in the subsequent evolution, and the inadequate convergence performance. 

Consequently, the diversity of the group plays an essential role in achieving global convergence of the algorithm. In light 

of this, the group's average position is determined based on the best position of its members. In statistics, the median and 

mean are commonly employed to indicate the general average level, with the mean being susceptible to the influence of 

extreme values.  

𝑃𝑚 = {
𝑝

(
𝑛

2
)+

𝑝(
𝑛

2
+1)    𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛        

𝑝(𝑛+1)/2 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑 
   (10.1) 

In which, n denotes the number of mayfly in groups. The group's average position is employed as the medium position in 

the male with velocity update algorithm and the expression from Eq. (2) is reformed as, 

𝑚𝑣𝑖𝑗
𝑡+1 = 𝑚𝑣𝑖𝑗

𝑡 + 𝜎1 𝑒−𝛾𝑟𝑝
2
(𝑠𝑏𝑒𝑠𝑡𝑖𝑗 − 𝑝𝑖𝑗

𝑡 ) + 𝜎2 𝑒−𝛾𝑟𝑔
2
(𝑐𝑏𝑒𝑠𝑡𝑗 − 𝑝𝑖𝑗

𝑡 ) + 𝜎3 𝑒−𝛾𝑟𝑔
2
(𝑃𝑚𝑖𝑗 − 𝑝𝑖𝑗

𝑡 ) (10.2) 

However, during the beginning stage of spatial search in the swarm intelligence algorithm, the group with population is 

fairly fragmented in terms of distribution, and a few individuals have extremely poor positions. Therefore, using the mean 

since the average position for the group might not be an accurate representation of the average position for all groups. 

Hence, this overall mayfly work introduces the notion of the group with adapted mayfly (as in Eq. 10) based on the 

Gaussian concept, and medium position with their reformed position, which organises every mayfly individual according 

to the value of their goal function, then chooses the group's median position as the mayfly's median position. 

 

Task scheduler 

Tasks related to MRMPSO optimization must be formulated to improve the total and individual usefulness functions, and 

addressed using integrated optimization techniques. The computational results demonstrate that resource allocation, 

which is driven by task requirements, effectively reduces service delays and achieves remarkable energy efficiency. 

Therefore, it is a desirable solution for mobile cloud utilizations. The optimized scheduler and the entire process are 

illustrated in Figure 1 and Algorithm 1, respectively. 
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Fig 2. Mayfly and reformed multi-objective PSO flow diagram 

 

One can suppose that a data-intensive MCC application T is represented as a collection of discrete activities. A model of 

an application is used as: 

T = {ts1; ts2;…; tsn}  (11) 

where n is number of tasks. Each task tsi is modelled as: 

tsi = {Li; ei; Si; di}  (12) 

Li denotes task input file location, remotely or locally; ei as the quantity of task execution instructions; Si as task input 

size; di task deadline. The location parameters and data size in various modeling tasks (split as low, medium, large and 

extra-large) have been included to achieve the goal of developing a data-aware MRMPSO optimisation model for 

allocating tasks for mobile applications in a hybrid MCC environment. 

 

Resource Modeling 

The system makes use of three different types of computing resources: cloudlets, public clouds, and mobile devices. A 

model of mobile device Md is as follows: 

Md = {γ; δcost; δdown; δup; ed; ds; ωp} (13) 

δdown; δup are download and upload bandwidth available in network; the cost of data communication δcost over a mobile 

network is represented by the following units: cost, mobile device storage as ds, available device energy as ed (Joule), 

available device memory as γ, and computing power of the device ωp.  

The mobile device (Md) can offload computationally intensive tasks to the Ccl, which can perform the tasks more 

efficiently due to its higher processing power and larger storage capacity with processing cost (pccost) for cloud-based 

devices. A public cloud or cloudlet Ccl virtual machine can be modeled as:  

Ccl = {pccost; δcost; δdown; ωcl} (14) 

A cloud machine with processing power is represented by ωcl, and its cost is represented by pccost. C is the expected 

overall financial cost of the MCC. The reformed multi-level PSO is utilized to allocate the resource for every MCC users 

depending on various tasks (split as low, medium, large and extra-large) as explained in algorithm 1. 

 

Algorithm 1: Resource sharing modules 

In: Input Network attributes; 

Out: Decision rate for Resource allocation; 

i. for every time slots,  

ii. then do  

iii. To evaluate the previous arrival of resource requests;  

iv. Estimate the resource allocation in maximum;  

v. Describe the MCC user access order;  

vi. Repeat step 8. Initiate t = t+1;  

vii. for t = 1 to T do  

viii. T = T.t+1  
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ix. Repeat the resource allocation in cloud data; 

x. Resolve the resource shortage and maximization problem;  

xi. Evaluate size of queue in cloud;  

xii. If (size of queue > 0)  

xiii. then allot the resource for all MCC users; // multi-level cloud users 

xiv. Else 

xv. Allocate the resource for primary users; 

xvi. Compute the overall load of the network;  

xvii. Update the resource sharing details;  

xviii. End 

 

Energy and time consuming model 

The total energy consumption (𝐸𝑔𝑇𝑜𝑡) as the system anticipates that the compute environment will execute simultaneous 

tasks, MRMPSO in MCC is estimated by calculating the energy consumed by processing mobile device (𝐸𝑔𝑃), the 

waiting energy (𝐸𝑔𝑊), in particular whenever the local executing time is faster than the executing time in remote area. 

𝐸𝑔𝑐 is the mobile energy usage for communication and data transport in the portable gadget for job (tj). 

𝐸𝑔𝑇𝑜𝑡 =  𝐸𝑔𝑃 + 𝐸𝑔𝐶 + 𝐸𝑔𝑊     (15) 

𝐸𝑔𝑃 = ∑ 𝜖𝑗
𝑃𝑥

𝑗=1        (15.1) 

𝐸𝑔𝑊 = (𝑀𝑡𝑊) ∗  𝜖𝑊      (15.2) 

𝑀𝑡𝑊 = 𝑚𝑎𝑥𝑖(0, (∑ 𝑑𝑡𝑗
𝑃 − 𝑚𝑎𝑥𝑖(∑ 𝑑𝑡𝑗

𝑃 , ∑ ))𝑑𝑡𝑗
𝑃 )  𝑐𝑑

𝑗=1  𝑐
𝑗=1

𝑥
𝑗=1  (15.3) 

𝐸𝑔𝐶 = ∑ 𝑑𝑡𝑗
𝐶𝑥

𝑗=1 ∗ 𝜖𝐶      (15.4) 

𝐷𝑡𝑗 =  𝑑𝑡𝑗
𝑃 + 𝑑𝑡𝑗

𝐶 + 𝑑𝑡𝑗
𝑊      (16) 

𝑑𝑡𝑗
𝑃 = 𝑒𝑗,𝑡𝑎𝑟𝑔 + (𝑆𝑖 ∗ 𝑒𝑗)      (16.1) 

𝑑𝑡𝑗
𝐶 =

𝑆𝑖

𝑚𝑖𝑛𝑖(𝛽𝑙,𝛽𝑐𝑡,MiniCost )
+ 𝑙  &  𝑑𝑡𝑗

𝑊 =
𝑇𝑟𝑞

𝜇
   (16.2) 

In which, the specified parameters such as cd, c, x: describe the quantity of tasks to be performed in the cloudlet, 

public cloud, and the portable device, in corresponding order. ∑ 𝑑𝑡𝑗
𝐶𝑥

𝑗=1 , ∑ 𝑑𝑡𝑗
𝑃𝑥

𝑗=1  & ∑ 𝑑𝑡𝑗
𝑊𝑥

𝑗=1  signify the overall 

processing duration for every tasks executed locally (mobile device) and remotely cloudlet and public cloud respectively. 

We take into account the energy consumption during waiting only if the waiting period 𝑀𝑡𝑊 is positive value. 𝜖𝑗
𝑃 is the 

predicted energy consumption of the mobile device for each of the following: task tj, 𝜖
𝑊 waiting for remote execution, 

and 𝜖𝐶  as data transfer/communication and the sensitivity factor for task-related data size is 𝑒𝑗 . The mean typical rate at 

which a remote server receives requests to perform tasks is 𝜇. The average amount of task requests currently in the queue 

is 𝑇𝑟𝑞. Among the data location and the target estimation in the network bandwidth in minimum range is 

𝑚𝑖𝑛𝑖(𝛽𝑙 , 𝛽𝑐𝑡) and their latency is l. 

The algorithm presented below aims to provide the MRMPSO-based task scheduler with the most optimal 

resource allocation module. The fitness function is used to evaluate the optimisation value for a certain clarification 

depend on the total monetary/financial cost C (as per equation 14) in order to fulfil the goal of scheduling tasks on the 

specified compute environment and the total energy E (as per equation 15) consumed by the mobile device. The fitness 

function takes a reformed multi-objective PSO particle as input, where the position denotes a solution for scheduling 

application tasks. The estimation of energy and cost depend on the task execution time, including time of communication, 

processing, and waiting. The time taken for data communication (DC) for a task (tj) is influenced by the location of the 

task data. DC is only taken into account when the environments for data storage and computing are dispersed. DC time's 

effect on mobile device energy use and cost is assessed by the MRMPSO fitness function. 

 

Algorithm 2: Task scheduling using MRMPSO based resource sharing 

Input: tasks T, computation resources R 

Output: task scheduler S 

Upgrade resources with metadata 

Set P (MRMPSO) 

Initialize MRMPSO Particles P[NP] NP : number of mayflies (particles) 

P:sbest = Init global best (sbest) 

for i = 1 to NP - 1 do  

Rand P[i]:POS 

Fcost = PSOFFn(P[i]:POS; T) 

UpdBestPos (P; P[i]; Fcost) 

end for 

Run PSO Iter 

for i = 1 to NL - 1 do  

for j = 1 to NP - 1 do  
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Estimate P[ij]:VY 

Upgrade P[ij]:POS 

FitCost = MRMPSOFFn(P[ij]:POS; T) //updated module with mayfly 

UpdBestPos(P; P[ij]; Fcost) 

end for 

end for 

MiniCost = PSOFFn(P:sbest:POS; T) 

S = (P:sbest:POS;MiniCost) 

return S 

 

Algorithm 2 outlines the key steps involved in determining the best plan for scheduling tasks in resource-constrained 

mobile applications that are data-aware. The computation requirement and size of task ti are used to calculate the task 

processing time. The influence of data size is assessed by conducting experiments on tasks handling with varying data 

sizes. DP is then utilized to estimate the amount of energy required to carry out an activity locally and the expense of 

doing so remotely. When the mobile device is not in use, or when the total local execution is less than the maximum 

distant execution in a cloudlet or public cloud, the system nevertheless assumes additional energy consumption. The 

proposed MRMPSO based technique has been evaluated for performance using software simulation. 

 

PERFORMANCE EVALUATIONS AND RESULTS  

The proposed hybrid MRMPSO MATLAB is used to simulate the algorithm. Every task has its own login and run times, 

which were provided by Job shop software and underwent arbitrary initialization. Execution time, resource utilisation, 

reliability, make span, and throughput are other metrics examined in the findings investigation. Tables 1 and 2 define the 

parameters of the MCC in virtual environment [39] and the MRMPSO algorithm respectively. 

 
Table 1 Parameters in Cloud system 

Parameters Range 

Number of VMs 40–200 

Amount of tasks 200–1000 

Size of tasks (MI) 30000–200000 

Power consumption (Watts) 200–1000 

Execution rate (MIPS) 1000–5000 

Percentage of power consumed in states from idle to active 0.6–0.7 

 

Furthermore, the workload magnitudes were generated haphazardly at execution time and the extent is determined by 

Millions of Instructions (MI). Moreover, the investigation employed 80 servers with diverse resource capabilities and 

workloads. The size of the 800-1000 jobs that make up the extra-large assignment is between 100000 and 200000 MI. 

Similar to this, the major work is made up of 600–700 smaller assignments, each of which is between 70000 and 100000 

MI in size. Similar to the little task, the medium-sized task is made up of 400–500 tasks with task sizes between 50000–

70000 MI. The small-sized task is made up of 100–200 tasks that are between 30000 and 50000 MI in size [38-40]. 

Various scheduling methods have been chosen for comparisons, namely IPSO, Firefly and IPSO with the hybrid 

MRMPSO scheme. 

 
Table 2 PSO considerations 

Parameter Value 

Population size 70 

Number of Iterations 100 

Velocity boundaries [−1, 1] 

 

A comprehensive examination carried out between FIMPSO and prevailing techniques regarding memory usage is 

illustrated in Figure 3. This figure indicates that FIMPSO attained the highest memory utilization for all sorts of tasks 

when compared to alternative approaches. However, the model that was presented demonstrated better results as it 

achieved the highest level of memory usage for small tasks, which is 60%. However, when it comes to exceptionally large 

tasks, both prior models exhibited inadequate memory usage, with only minimal memory utilization being achieved. 

Thus, it can be deduced that the MRMPSO algorithm presented is extremely efficient in regards to memory usage across 

all task types, regardless of their magnitude. The diagram further indicates that an escalation in the quantity of tasks leads 

to a rise in memory consumption. 
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Fig. 3 Comparisons of memory usage for various tasks & algorithms 

 

A comprehensive evaluation of the average throughput of different techniques is conducted, comparing MRMPSO with 

the currently available methods, as illustrated in Figure 4. Simultaneously, IPSO and FF-IPSO techniques endeavored to 

effectively handle the situation by achieving a marginal throughput in the mean data transfer rate of about 85% and 90%. 

However, the model that was presented demonstrated exceptional results by achieving the highest average throughput of 

100% when handling extra-large tasks. 

 
Fig. 4 Comparisons of average throughput for various tasks & algorithms 

 

The dependability assessment of different techniques was conducted comparing MRMPSO and previously established 

techniques as depicted in Figure 5. In the case of minor tasks, conventional models exhibited inadequate dependability by 

attaining only the minimum level of reliability.  

 
Fig. 5 Comparisons of reliability for various tasks & algorithms 

 

Hence, it can be deduced that the MRMPSO algorithm introduced is extremely efficient in ensuring dependability across 

various task types, irrespective of their magnitudes. Additionally, it is evident that the dependability diminishes as the 

quantity of tasks rises. 
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Figure 6 presents an in-depth contrast of various scheduling techniques with the MRMPSO algorithm concerning the 

make span (completion time). The illustration demonstrates that the MRMPSO produced significantly superior outcomes 

compared to the contrasted scheduling techniques. Nonetheless, the MRMPSO algorithm put forward proved to be 

efficient, meeting the minimum make span requirement of about 145. It should be emphasized that the make span tends to 

augment as the number of tasks rises. 

 
Fig. 6 Comparisons of make span for various tasks & algorithms 

 

Table 3 presents an elaborate contrast of various scheduling techniques with the FIMPSO algorithm concerning the mean 

workload, mean turnaround time, and mean response time. The data in the table reveals that MRMPSO achieved 

significantly better outcomes than other scheduling algorithms.  

Nonetheless, the MRMPSO algorithm put forth produced a favorable result with the minimal average processing 

time of about 18 ms. While gauging the outcomes in relation to the response time in average range, it is discernible that 

IPSO and FF approaches necessitated a maximum time of around 48 and 49 ms, respectively as depicted in Figure 7.  
 

Table 3 Comparison of proposed MRMPSO and other scheduling methods 

Methods Average load Average response time (ms) Average turnaround time (ms) 

IPSO [32] 0.45 48.23 56.994 

Firefly [37] 0.47 49.18 56.44 

FF-IPSO [40] 0.26 14.91 24.13 

FIMPSO [38] 0.25 14.08 21.45 

Proposed MRMPSO 0.24 13.18 18.88 
 

 
Fig. 7 Analysis of average response time analysis for various algorithms 

 

Correspondingly, when evaluating the results based on the mean turnaround time, it is evident that IPSO and FF methods 

recorded the highest mean turnaround time of around 57 and 56 ms, respectively as depicted in Figure 8. 

 
Fig. 8 Analysis of average turnaround time for various algorithms 
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Nonetheless, the suggested MRMPSO technique produced a successful result with the minimum mean response time of 

13.18 milliseconds. Hence, it can be deduced that the MRMPSO algorithm put forward exhibits a commendable mean 

output rate across all task categories, regardless of their magnitudes. Additionally, it can be deduced that the mean output 

rate experiences a decline as the number of tasks rises. Also, it can be deduced that the MRMPSO algorithm demonstrated 

is exceedingly efficient when it comes to CPU usage for all task categories, regardless of their magnitudes. Additionally, 

the illustration suggests that augmenting the quantity of tasks further leads to a rise in memory utilization. 

 

CONCLUSION 

Based on the central concept of service-oriented utility functions, an architectural and mathematical framework for 

heterogeneous resource sharing is provided in this study. A unified paradigm is offered where all these qualities were 

equivalently mapped to time resources. This is because heterogeneous resources are frequently measured/quantified at 

dissimilar scales/units (for example, energy, latency, etc.) based on Mayfly and Reformed Multi-Objective Particle 

Swarm Optimization (RMPSO), referred to as MRMPSO. The origin of this mayfly phenomenon lies in the customary 

actions of mayflies, specifically their reproductive rituals. Our understanding is that mayflies reach maturity upon 

hatching and only the most resilient individuals endure, irrespective of their lifespan. The potential resolution to the 

challenging circumstances can be found in the positional coordinates of each and every mayfly in search spaces. The 

optimization problems are formulated with enhanced diverse parameters by utilizing service-oriented utility functions and 

resolved them by employing integrated optimization methods. Our numerical findings demonstrate that the utilization of 

service-oriented heterogeneous resource sharing effectively minimizes service latencies and attains exceptional energy 

efficiency, rendering it a desirable choice for mobile cloud deployment. The outcomes will be displayed in a real 

execution scenario to assess the variation in available bandwidth and network latency during practical execution scenarios 

such as 4G, 5Gs using the proposed module in the future. 
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