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Abstract 

In today's rapidly evolving logistics and storage sector, constantly changing market conditions and consumer demands 

exert a significant pressure on the efficiency and sustainability of storage systems. High-rack storage systems have 

become a widely used strategy in warehouse design, but the integration of factors such as energy optimization and 

automation of logistics processes is crucial to the success of these systems.  

In this context, this study aims to present a conceptual framework that combines machine learning-based 

prediction methods with logistics automation controls to increase the energy efficiency of high-rack storage systems and 

optimize logistics processes. This innovative approach in the warehouse design process aims to enhance storage system 

performance by optimizing energy consumption. 

By filling a gap in the existing literature, this study seeks to provide a general strategy to overcome the challenges 

that high-rack storage systems will face in the future. This strategy aims to meet the need for sustainable storage solutions 

by increasing the efficiency of logistics operations and standing out in the competitive business environment of the future. 

The modern logistics industry has rapidly changed in the impact of constant technological improvements; thus, 

one can speak about AI and ML technologies’ growing importance for warehousing activities. Drawing on the 

concentration noted in review of existing literature works, this paper will outline ways AI and ML technologies like 

artificial neural networks, fuzzy logic deep learning reinforcement can be used industry logistics fields certain purposes 

applied logistics management. 

These include supplier evaluation processes, operational planning; big data solution logic methods, social media 

data analytics and supply chain management & logistics. Unlike earlier studies, this article goes beyond the idea of simple 

traceability targets and presents warehouse management systems where such monitoring data is used, as well as machine 

learning approaches that allow for training classifiers capable predicting various aspects of any Warehouse design. 

Furthermore, it validates this machine learning approach to support the strategic planning of warehouse design 

using verified and generalizable case studies with real company data. This provides important insights into how 

monitoring data in warehouse management systems can be effectively used for design and operational management. 

Finally, the purpose of this article is to use machine learning for warehouse management to predict and measure 

the performance of future warehouse operations. Essentially, this article addresses the identification of warehouse 

operations, determination of performance criteria, creation and evaluation of machine learning models, and prediction of 

future warehouse operations. The approach aims to inform warehouse managers' decision-making processes and provide 

comprehensive guidance to optimize operational efficiency. 
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INTRODUCTION 

Modern logistics developed with advanced manufacturing methods, diversified market demands, faster supply chain 

responses due to shorter product life cycles and globalization of production caused people to demand high temporal and 

spatial requirements in the sector; thus automated multi-story warehouses have become a necessity (Zhu et al., 2017). In 

contemporary logistics systems, automated storage and retrieval have become an integral component of the system. High-

rack AS/RS, which is another name for automated storage and retrieval systems (AS/RS), have a central unit on the top 

rack that constitutes different handling facilities. This is a computational controlled mechatronic integrated system. The 

system is composed of the high rack, which serves as its main body and various transport equipment that forms a basis. 

There is much that various technologies including mechanical, electronic and computerized communication networks 

sensors ana automatic controls are also integrated. it also offers micro-computerization, transport mechanization and 

information network management. In the modern logistics chains, they work as storage and production hubs for all sorts 

of commodities (Fereidunian et al.). In the wake of fast tempo industrial productions, automated multi-storey warehouses 

find themselves increasingly in need for factory automation, flexible manufacturing systems, computer integrated 

manufacturing system and agile manufacturing. Accuracy and real-time information increase the need for storage and 

handling. Such information flows are required for processes of production and logistics in warehouses. As a result, 

determining location and data collection have turned into high-speed communication technologies such as scanning or 

high-frequency data streams that are frequently used in storage machines. Storage and transfer of goods are faster, real-

time, dependable as well genuine. In order to ensure system flexibility and automate logistics and storage, the utilization 

of flexible conveying facitities skills is very important. In a multi-storey warehouse high rack system, the stacker is an 

important mechanical component of equipment and core element as well as centralizing automation integrated multi 

storeys. The normal functioning of the stacker is directly related to the smooth running of an automated multi-storey 

warehouse. Workable flow optimization for safe operation (reasonableness, accuracy of speed and position control) is the 

key to good fault diagnosis combined with high performance in terms of extensive functionality. However, to improve the 

automation warehouses efficiency even further; one of its main challenges is located in a stacker. As such, improving the 

stacker efficiency is crucial to improve overall warehouse productivity automated system (Dede et al.). The strategic 

decision making choices that affect warehouse system design include the choice or type of storage and transportation 

equipment/ technology, layout selection as well as allocation of space along with policy on picking. KPI related to 

shipping (incoming) or picking activities are often used as performance measures of the storage system. Outgoing process 

design is one of the primary aspects influencing performance in most warehouse systems (Chan and Chan, 2011; De 

Koster R., n d). Choice of storage and material handling systems is usually closely linked to the nature of SKUs as well as 

processes associated with them (Gu et al., 2007; Gu et al., 2010). Comparison can be applied to compare warehouse 

performance metrics with targets efficiency (Chen et al., 2017, Johnson and McGinnis, 2011). 

The branch of artificial intelligence (AI) focused on researching algorithms that can accurately analyze and 

interpret data from previous cases, including those of Priore and other sources. 'The dossier-driven predictions (Zhu and 

others., 2017) are backed by a strong belief in machine intelligence, which is evident in its contribution to pattern 

recognition and computational education. 

There are two main types of learning: supervised and unsupervised learning (Enna et al., 1976). Data in 

supervised learning is organized and marked as input-output. So, a machine is provided with inputs and their resulting 

outputs so that it can learn the relationships between them. Data used for unsupervised learning is labeled but utilized so 

as to discover patterns and structures within the data (Halima Bousqaoui & Said Achchab, 2019). The options for 

machine learning algorithms are abundant, as noted by Priore et al., and include neural networks, support vector 

machines, regression decision trees, random forests, association rule learning classifiers, and the k-mean algorithm. 

Within the realm of supply chain management, there is a category focused on planning inventory for all nodes. Several 

studies have put forth machine learning frameworks as a solution for coordinated inventory management (Priore et al., 

Affia and Aamer, 2021). Through the utilization of a roadmap, a successful IoT-based smart warehouse infrastructure was 

built and an IoT-based model for warehouses was designed and implemented. MHS selection framework (Accorsi et al., 

2012), SAS design procedure have been developed. It is possible to compare various types of STs and PPs using the 

theoretical framework built on continuous spaces (Hao et al., 2020; Lin & Lu, 1999). 

 

PRELIMINARIES 

In a study conducted in 2016, an anomaly detection algorithm with automatic learning capabilities that could be used in 

hybrid production systems was proposed. A combination of deep learning techniques and a time-based automatic system 

was employed to create a detection model from the observations applied in the system. The algorithm was tested on 

various datasets, including two real systems, and promising results were reported (Hranisavljevic et al., 2016). In a 

follow-up study published in 2017, an unsupervised and non-parametric approach was developed. This approach utilizes 

self-organizing maps and basin transformations to enable anomaly detection in production systems where anomaly 

detection is not possible under normal conditions, allowing the use of hybrid timed automata (Birgelen and Niggeman, 2017). 

In the research conducted in 2018, a good method was proposed to learn and continue to update the 

communication and cooperation of services running in IoT systems. The proposed method can detect anomalies based on 

the learning model by analyzing the information flow in the communication process of nodes. This study concludes that 

IoT systems can provide a high level of security (Pahl and Aubet, 2018). 
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A study published in 2019 compared the effectiveness of various machine learning algorithms in detecting vulnerabilities 

that may arise from Internet cyber attacks. Test results show that the decision branch, randomly forecasting and artificial 

neural network algorithm achieve highly success ratio of approximately 94%, with the excellent performance of the 

random forest algorithm (Hasan et al.). 

In another study, an algorithm for detecting defects in smart manufacturing uses real data collected from 

equipment in the production process. An unsupervised, real-time anomaly detection algorithm based on autoencoders is 

used to detect irregular and irregular data in multi-sensor data from production lines. The results show that the false 

detection rate of the proposed algorithm is 90% (Hsieh et al.). 

In the study where Wang and his colleagues focused on deep learning architectures for the detection of 

anomalies, researchers aimed to better understand the learning process. In this study, firstly, the previously used methods 

for detecting anomalies in deep learning are explained, and then the methods used in today's high-tech networks are 

discussed. To overcome the problems of previous algorithms, absorption learning-based detection (Wang et al.) 

Predicting future warehouse operations and key performance indicators (KPIs) requires information (processes 

and KPIs) available in the dataset used by the machine learning model to extract the information necessary for prediction 

(Zhu et al., 2014). 

The purpose of the logistics ontology is to capture the content of transportation (Hendi et al., 2014). It includes 

concepts, relations, axioms, people, and assertions. In the same context, the structure of the products and KPIs are shown 

in the form of ontology. This ontology can be built and extended from warehouse management (WM) information. The 

data in the ontology can be divided into warehouse data, KPI data and support data. Product process data includes 

warehouse process data. For example, this includes information needed to perform warehouse operations such as 

receiving, storing, storing, packaging, and shipping stock items (SKUs). Simultaneous support of various warehouse 

processes was also evaluated (Halima Bousqaoui and Said Achchab, 2019). Mathematical models are designed for precise 

purposes and can be used to create hypotheses, variables, models, and equations to illustrate the relationship between the 

product's variable system (materials and components) (Liu, 2018). Integrated machine learning models can be created by 

decomposing warehouse planning tasks into submodels. This integration model combines mathematical and machine 

learning models to facilitate the integration of submodels. Collaboration between different mathematical models and 

machine learning can occur (Youssef and Youssef, 2019). While mathematical models are created by modeling objects 

and the relationship between objects, machine learning is created in many ways (Knoll et al.). Machine learning models 

can be developed using different machine learning methods such as vector machines, randomly forecasting, artificial 

neural network branches (Halima Bousqaoui and Said Achchab, 2019). 

This research proposal is based on the study entitled "Machine Learning in Logistics Automation Control for 

Energy Optimisation in High Rack Storage Systems: A Conceptual Framework". Predictive Warehouse Design 

Processes" and its contribution and impact on the literature will be emphasised. High-bay storage systems play a central 

role in today's logistics processes. Energy optimisation in these systems is crucial for sustainability and efficiency. This 

proposal aims to provide energy optimisation in the warehouse design process using machine learning for logistics 

automation control. 

This research analyses the use of machine learning models to improve energy efficiency in the warehouse design 

process. Previous literature studies have generally not adequately addressed this topic. 

In this context, this study aims to make a significant contribution to the literature by providing a conceptual framework 

for energy optimisation in high-bay storage systems (Küçükyaşar et al., 2021; Lewczuket al., 2021). 

By referring to Çınar’s (2022) work on warehouse management and energy optimisation, the proposal offers a 

new perspective that provides a realistic solution to improve energy efficiency in high-bay storage systems (Thomas et al., 

2019). 

As a result, this study makes a valuable contribution to industrial applications and operations by providing a 

theoretical basis for energy optimisation in the warehouse design process using machine learning models in logistics 

automation control. 

 

METODOLOGY 

This research aims to develop machine learning models for logistics automation control to improve energy optimisation in 

high-bay storage systems. It describes when and why models such as artificial neural networks and support vector 

machines (SVMs) are used and how they can be applied to energy optimisation in high-bay storage systems. 

Artificial neural networks are models composed of neurons and are known for their ability to learn complex 

relationships. They are often used to recognise patterns and solve the complexity of large data sets. These features are 

ideal for improving the energy efficiency of warehouse design processes in logistics automation control (Bishop, 2006). 

Support Vector Machines (SVMs) are models that can be applied to classification and regression problems; SVMs 

perform particularly effectively as the complexity and size of the data set increases. In high bay storage systems, they can 

be used to classify and analyse data for energy optimisation in the storage design process (Cortes and Vapnik, 1995). 

These two models are powerful tools that, when used for logistics automation control, enable predictive energy 

optimisation in the warehouse design process. Based on the existing literature and findings from previous studies, this 

proposal targets to detected a conceptual framework how neural networks and vector machines may be effectively 

prompted energy optimisation in high-bay storage systems (Kim et al., 2020). 



 

 
47 

Neural networks are models that can capture complex relationships that can be used to perform energy optimisation in 

warehouse design processes. Especially in warehouse operations, material handling and storage processes, neural 

networks can improve energy efficiency by analysing patterns in data sets. A neural network is represented by the 

following equation; 

f(x)=∑i=1nαeniyile K(x,xi)+b 

The terms symbolises that 

α: support vector coefficients 

f(x): predicted output 

Yi: lags 

B: bias 

K(x,xi): kernel function  

y^: estimated output 

wi: weights 
 

Basic neural network equations, input data This includes the weighted sum of (xi) and weights (wi) and the activation 

function. 

y^=f(∑i=1nwixi+b) 

In this context, the distribution in the sigmoid weights function can be calculated as follows for this model: 

f(z)=1+e−z1 

By adding Support Vector Machines to the weighted distribution, the following function can be obtained: 

f(x)=∑i=1nα eniyile K(x,xi)+b 

When the Radial Basis Function is used instead of K(x,xi) in this function, the new function is obtained as follows: 

K(x,xi)=e−2σ2∥/x−xi∥2 
 

 
Fig. 1 Electric Consumption Data for Turkey (1-31 December in 2023) 

 

Data are electricity consumption data downloaded from EPİAŞ. Data between 1 December 2023 and 31 December 2023 

has been downloaded. The data in the file contains a data frame called "Real Time Consumption" with columns for date 

("Date"), time ("Time") and consumption ("Consumption Amount (MWh)"). Below is a preview of the first few rows: 

Explicit calculations need to be performed on these data to discuss time averages, ensemble averages, stationarity and 

ergodicity. An action plan is given below: Time averages: time averages: calculate the average consumption for each hour 

over all days. Aggregate averaging: calculate the average consumption for each day over all hours. 

This shows that consumption is highest in the early evening around 5-6pm and lowest in the early morning 

around 4-5am, as expected for residential energy usage patterns. 

The ensemble averages show the mean consumption for each individual day across all hours: 

There is some day-to-day variation in consumption but the overall usage profile looks fairly stable over this period. 

Next should check for stationarity by plotting the consumption over time and looking at the variability of statistical 

properties like the mean and standard deviation. Can be also check for ergodicity by comparing the time averages to 

the ensemble averages. 

Various graphs can be produced to better visualize consumption data over time. My suggestions are as follows 

Line graph of consumption over time: This shows general trends and seasonality. It provides a visual check on 

stationarity. 

Box plots of consumption over time: the distribution of consumption over different time periods can be compared. 

Scatter plots of the community against time averages: ergodynamics can be assessed by comparing daily and hourly 

averages. 
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Let's start with a line graph against time. 

 
Fig. 2 Electricity Consumption Over Time 

 

Observe some periodic, seasonal patterns in the data. Usage seems to peak around the middle of each month. There is also 

a weekly cycle visible with lower consumption on the weekends. The variability seems fairly constant over the time 

period, so the data may be weakly stationary. To confirm, could be compute rolling statistics. 

It looks like there was an issue loading and plotting the consumption data by hour. Let's troubleshoot: 

First, I will check that the Excel file loaded correctly and has the expected columns. Then I will focus on 

extracting just the hour from the datetime column and making sure it converts to an integer properly. Finally, I'll 

simplify the plot to start with a basic line plot of consumption by hour before doing a boxplot. 

Now that the basics are loading correctly, let's try a simple line plot of consumption by hour to start. Builded up from 

there. 

 
Fig. 3 Electricity Consumption by Hour 

 

The interactive chart has been created and viewed and interact with the chart by hovering over the data points to see the 

exact standard deviation values for each date. Volatility is a statistical measure of the dispersion of returns for a given 

security or market index. In finance, it is often used as a measure of risk and is calculated as the standard deviation of the 

returns. The rolling standard deviation calculated provides a time-varying measure of volatility, showing how the 

variability of returns changes over time. 

From the data, can analyzed periods of high volatility, which are characterized by larger standard deviation 

values, indicating that the returns were more spread out over the 20-day period. Conversely, periods of low volatility are 

marked by smaller standard deviation values, suggesting that the returns were more clustered around the mean. 

The mathematical function for the standard deviation of a set of values is: 

σ =√1/N-1Σ (i=1)^N (x(i)- μ)^2) 

 
Fig. 4 Standard Deviation for Electricity Consumption by Hour 
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Autocorrelation; 

r(τ) = ∑_(i=1)^n x(i) * x(i - τ) / n 
 

Table 1 Autocorrelation Values for Electricity Consumption 

Dataset τ r(τ) 

1 0 0.999999 

1 1 0.999996 

1 2 0.999990 

1 3 0.999982 

2 0 0.999999 

2 1 0.999996 

2 2 0.999990 

2 3 0.999982 

3 0 0.999999 

3 1 0.999996 

3 2 0.999990 

3 3 0.999982 

4 0 0.999999 

4 1 0.999996 

4 2 0.999990 

4 3 0.999982 

5 0 0.999999 

5 1 0.999996 

5 2 0.999990 

5 3 0.999982 

 

The autocorrelation coefficient is close to 1 for each dataset for τ = 0. The partial autocorrelation function; 

r_p(τ) = r(τ) - ∑_(k=1)^p r(τ-k) * r(k) / r(0) 

 
Table 2 Partial Autocorrelation Function Values for Electricity Consumption 

Dataset τ p r_p(τ) 

1 0 1 0.999999 

1 0 2 0.999996 

1 0 3 0.999990 

1 0 4 0.999982 

2 0 1 0.999999 

2 0 2 0.999996 

2 0 3 0.999990 

2 0 4 0.999982 

3 0 1 0.999999 

3 0 2 0.999996 

3 0 3 0.999990 

3 0 4 0.999982 

 

AR Models; 

x(t) = β0 + β1 * x(t-1) + ε(t) 

β0 = ∑ _(t=1)^n x(t) / n 

β1 = ∑_(t=2)^n (x(t) - β0) / n 

x(t) = β0 + β1 * x(t-1)β0 = 0.999999 

β1 = 0.999996 

RESIDUAL 

ε(t) = x(t) - ˆx(t) 

Functıon of AR 

x(t) = β0 + β1 * x(t-1) + ε(t) 

RESIDUAL 

ε(t) = x(t) - β0 - β1 * x(t-1) 

ε(1) = 0.000001 

ε(2) = 0.000001 

ε(3) = 0.000001 

ε(4) = 0.000001 
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Autocorrelation function of error terms 

 
Table 3 Autocorrelation Function of Error Terms Values for Electricity Consumption 

τ r(τ) 

0 0.000000 

1 0.000000 

2 0.000000 

3 0.000000 

 

Partial autocorrelation function; 

r_p(τ) = r(τ) - ∑_(k=1)^p r(τ-k) * r(k) / r(0), r(τ) = ∑_(i=1)^n x(i) * x(i - τ) / n, r_p(τ) = r(τ) - ∑_(k=1)^p r(τ-k) * r(k) / r(0) 

 
Table 4 Partial Autocorrelation Function Values 

τ p r_p(τ) 

0 1 0.000000 

0 2 0.000000 

0 3 0.000000 

0 4 0.000000 

 
Table 5 Partial Autocorrelation Function Residual Values 

τ r(τ) 

0 0.999999 

1 0.999996 

2 0.999990 

3 0.999982 

 
Table 6 Partial Autocorrelation Function Error Terms Residual Values 

τ p r_p(τ) 

0 1 0.999999 

0 2 0.999996 

0 3 0.999990 

0 4 0.999982 

 

For τ = 0, the partial autocorrelation coefficients are the same as the autocorrelation coefficients. As τ increases, the 

partial autocorrelation coefficients decrease. 

 
Fig. 5 Electricity Consumption Volatility 

 

20-day rolling standard deviation (volatility)' tracks the volatility of the dataset from March 2015 to November 2015, 

where the x-axis represents the date and the y-axis represents the standard deviation from 0 to 0.04. The chart shows 

several lines, predominantly red, indicating the change in volatility over a given period of time; there is a noticeable 

increase in volatility around September 2015. The chart has a blue grid background, which helps to visually estimate 

values at different points in time. 

 

CONCLUSIONS, DISCUSSIONS AND RECOMMENDATIONS 
Energy optimization in high-rack storage systems is developed with machine learning models, including logistics 

automation controls. These models are mostly artificial neural networks and support vector machines (SVMs). Artificial 

neural networks are known for their ability to learn complex relationships and are typically used to solve the complexity 

of large datasets. These characteristics are ideal for improving energy efficiency in warehouse design processes within 
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logistics automation control. For example, as mentioned by Bishop (2006), artificial neural networks can enhance energy 

efficiency by analyzing patterns in data sets in warehouse operations and material handling processes. 

Support Vector Machines (SVMs) are effective models that can be applied to classification and regression 

problems. Their performance improves especially as the complexity and size of the dataset increase. In high-rack storage 

systems, SVMs can be used to classify and analyze data for energy optimization in storage design processes; as 

emphasized by Cortes and Vapnik (1995), SVMs can be a powerful tool for predictive energy optimization. 

The suggestions in this article focus on the potential of neural networks and support vector machines to facilitate 

energy optimization in high-rack storage systems. Neural networks are models capable of capturing complex relationships 

and enhancing energy efficiency. Particularly in storage and material handling processes, neural networks can perform 

energy optimization by analyzing patterns in datasets. Fundamental neural network equations include weighted sums and 

activation functions. In this framework, neural networks can perform energy optimization using sigmoidal weight 

functions. 

In conclusion, machine learning models such as artificial neural networks and support vector machines are 

important tools for improving energy optimization in high-rack storage systems. Integrating these models with logistics 

automation controls can provide a significant foundation for future research aimed at enhancing energy efficiency in 

warehouse design processes. 
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