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Abstract 

This paper discusses the adoption of the Runge-Kutta Method which is classically designed for solving First Order 

Differential equations to the solution of Optimal Control Problems (OCP) constrained by state differential equations. The 

Extended Runge-Kutta Method (ERKM) algorithm requires the formulation of the Hamiltonian from the given Optimal 

Control Problems. This will, in turn, be used to generate the appropriate multi-boundary conditions. The developed 

boundary conditions will then be embedded at each iteration of the ERKM algorithm to determine the values of the state, 

the co-state, and the control variables until a satisfactorily prescribed tolerance is reached. The ERKM algorithm was 

tested on some Lagrange forms of the Optimal Control Problems with successes recorded compared to existing results. 
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INTRODUCTION 
In recent years, numerous methods have been developed to solve constrained Optimal Control Problems (OCP) that 

emanated from Engineering, Physical Sciences, and other fields of human endeavors. The most popular and common 

method is the calculus of variation method [20] and [18] in which the first optimality conditions which the first optimality 

condition(s) is/are expected to be derived. The condition(s) resulted in a two-point or multi-point boundary with a special 

structure because it arises from taking the derivative of the Hamiltonian, ℋ(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) that is of the form: 
𝜕ℋ(𝑥(𝑡),𝑢(𝑡),𝜆(𝑡),𝑡)

𝜕𝜆(𝑡)
= �̇�(𝑡)      (1) 

𝜕ℋ(𝑥(𝑡),𝑢(𝑡),𝜆(𝑡),𝑡)

𝜕𝜆(𝑡)
= �̇�(𝑡)      (2) 
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Though the method is good for computation, it becomes more cumbersome when the problems to be solved are complex.  

 Another method this research is concerned with is the operator-based method as described in [7]. This requires 

the transformation of the constrained problem into an unconstrained one using the penalty function method as observed in 

[4], [1], and [5], or the Multiplier method as seen in [7], [17], [22], and [27]. The result obtained from this conversion will 

be expanded and written in a bi-linear form with the notion that 𝑎1 = 𝑎2, 𝑏1 = 𝑏2, etc. The applications of a series of 

theorem that include the Laplace transformation and Convolution integral theorem resulted in the development of the 

developed operator which replaces the Hessian matrices in the multivariate unconstraint minimization method in 

Optimization theory. This method is good but the process involved in constructing the control operator could be more 

relaxed and convenient.  

Contrary to the two methods described above, the ERKM algorithm combines some steps involved in the indirect 

method with the Runge-Kutta Algorithm to develop a preferred and less stressful method of solution that is believed to 

give a better approximation. 

 

REVIEW OF RELATED LITERATURE 
Due to the algorithmic framework of this Research method, the relationship of the ERKM algorithm with the three major 

methods to be reviewed are: 

The Indirect Method, the Operator-Based Method using a multiplier as a method of transformation, and the Runge-Kutta 

Method.  

 

The Indirect Method of Solving Optimal Control Problems 

Let us consider a plant whose system is described by the first-order differential equation as: 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡)          (3) 

with a Bolza form performance measure by [10] and [24] as 

𝐽(. ) = 𝑠(𝑥(𝑡))|(𝑡=𝑡𝑓) + ∫ 𝑣(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0
       (4) 

while transforming (3) and (4) to unconstrained via the Lagrange Multiplier Method according to [16] and [22] gives rise 

to   

𝐽(. ) = ∫ 𝑣(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0
+ ∫ [(

𝜕𝑠(.)

𝜕𝑡
)

𝑇
�̇�(𝑡) +

𝜕𝑠(.)

𝜕𝑡
] 𝑑𝑡

𝑡𝑓

𝑡0
  

+ ∫ 𝜆𝑇(𝑡)[𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) − �̇�(𝑡)]𝑑𝑡
𝑡𝑓

𝑡0
       (5) 

According to (1), the Lagrange function form of (5) is represented as 

∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) 𝑑𝑡
𝑡𝑓

𝑡0
        (6) 

where (6) can be defined as 

∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) 𝑑𝑡
𝑡𝑓

𝑡0
= 𝑣(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) + 𝜆𝑇(𝑡) [𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) + [(

𝜕𝑠(𝑥(𝑡),𝑡)

𝜕𝑡
)

𝑇
�̇�(𝑡) +

𝜕𝑠(𝑥(𝑡),𝑡)

𝜕𝑡
] −

𝜆𝑇(𝑡)�̇�(𝑡)]    

this can be put in the Hamiltonian form as 

ℋ(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) + [(
𝜕𝑠(𝑥(𝑡),𝑡)

𝜕𝑡
)

𝑇
�̇�(𝑡) +

𝜕𝑠(𝑥(𝑡),𝑡)

𝜕𝑡
] − 𝜆𝑇(𝑡)�̇�(𝑡)  

where ℋ is the Hamiltonian Function according to [21] and [23]. Then, if the objective function (5) is perturbed to give 

𝐽𝑎(. ) = ∫ 𝑣(𝑥∗(𝑡) + 𝛿𝑥(𝑡), 𝑢∗(𝑡) + 𝛿𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓+𝛿𝑡𝑓

𝑡0

+ ∫ [(
𝜕𝑠(. )

𝜕𝑡
)

𝑇∗

(�̇�∗(𝑡) + 𝛿�̇�(𝑡)) + (
𝜕𝑠(. )

𝜕𝑡
)

∗

] 𝑑𝑡
𝑡𝑓+𝛿𝑡𝑓

𝑡0

+ ∫ 𝜆𝑇(𝑡)[𝑓(𝑥∗(𝑡) + 𝛿𝑥(𝑡), 𝑢∗(𝑡) + 𝛿𝑢(𝑡), 𝑡) − (�̇�∗(𝑡) + 𝛿�̇�(𝑡))]𝑑𝑡
𝑡𝑓+𝛿𝑡𝑓

𝑡0

 

= ∫ 𝐿𝑝(. )𝑑𝑡 =
𝑡𝑓+𝛿𝑡𝑓

𝑡0
 ∫ 𝐿𝑝(. )𝑑𝑡 +

𝑡𝑓

𝑡0
∫ 𝐿𝑝(. )𝑑𝑡

𝑡𝑓+𝛿𝑡𝑓

𝑡𝑓
  

 ≡ ∫ 𝐿𝑝(. )𝑑𝑡 +
𝑡𝑓

𝑡0
∫ 𝐿𝑝(. )|𝑡=𝑡𝑓

𝛿𝑡𝑓𝑑𝑡
𝑡𝑓

𝑡0
       (7) 

where 𝐿𝑝(. ) is the perturbed model of the Lagrange multiplier [22]. The variation of the functional value can be 

expressed as: 

Δ𝐽𝑎 = 𝐽𝑎(. ) − 𝐽(. ) = ∫ 𝐿𝑝(. )𝑑𝑡
𝑡𝑓+𝛿𝑡𝑓

𝑡𝑓

− ∫ 𝐿𝑝(. )𝑑𝑡
𝑡𝑓

𝑡0

≡ ∫ 𝐿𝑝(. )𝑑𝑡 +
𝑡𝑓

𝑡0

𝐿(. )|𝑡=𝑡𝑓
𝛿𝑡𝑓 − ∫ 𝐿(. )𝑑𝑡

𝑡𝑓

𝑡0

 

Therefore,  

∫ (𝐿𝑝(. )𝑑𝑡 +
𝑡𝑓

𝑡0
𝐿(. ))𝑑𝑡 =

∫ (𝐿𝑝(𝑥∗(𝑡) + 𝛿𝑥(𝑡), 𝑢∗(𝑡), 𝑡) + 𝛿𝑢(𝑡), 𝑡)
𝑡𝑓

𝑡0
− 𝐿(𝑥∗(𝑡), 𝑢∗(𝑡), 𝜆∗(𝑡), 𝑡) + (𝑥∗(𝑡), 𝑢∗(𝑡), 𝜆∗(𝑡), 𝑡)|𝑡=𝑡𝑓

𝛿𝑡𝑓)  (8) 

Applying the Taylor series expansion to (8) and integrating by part as seen in [25] and [20] and as put to use in [19] 

taking into consideration the first variation of the functional in the (8) gives rise to  
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𝛿𝐽 = ∫ [
𝜕𝐿(.)

𝜕𝑡
−

𝑑

𝑑𝑡
(

𝜕𝐿(.)

𝜕�̇�(𝑡)
)

𝑇∗
𝛿𝑥(𝑡)]

𝑡𝑓

𝑡0
𝑑𝑡 + ∫ [(

𝜕𝐿(.)

𝜕𝑢(𝑡)
)

𝑇
𝛿𝑢(𝑡) + (

𝜕𝐿(.)

𝜕�̇�(𝑡)
)

𝑇∗
𝛿𝑥(𝑡)]

𝑡𝑓

𝑡0
𝑑𝑡 + 𝐿(. )∗|𝑡=𝑡𝑓

𝛿𝑡𝑓  (9) 

 

Lemma 1: Let 𝑔(𝑡) and 𝑥(𝑡) be continuous and integrable over a close interval 𝑡0 and 𝑡𝑓 then ∫ 𝑔(𝑡)𝛿𝑥(𝑡)𝑑𝑡 = 0
𝑡𝑓

𝑡0
 at 

every point over the integral [𝑡0,  𝑡𝑓] as appeared in [19] and referenced by [23].  

From (9) using Lemma 1, one obtains 
𝜕𝐿(.)

𝜕𝑡
−

𝑑

𝑑𝑡
(

𝜕𝐿(.)

𝜕�̇�(𝑡)
)

∗
= 0           (10) 

and  

(
𝜕𝐿(.)

𝜕�̇�(𝑡)
)

∗
= 0           (11) 

Finally,  

𝛿𝐽 ≈ 𝐿(. )∗|𝑡=𝑡𝑓
𝛿𝑡𝑓 + (

𝜕𝐿(.)

𝜕�̇�(𝑡)
)

𝑇∗
𝛿𝑥(𝑡)|𝑡=𝑡𝑓

       (12) 

𝛿𝑥𝑓 = 𝛿𝑥𝑡𝑓
+ 𝑥(̇𝑡)|𝑡=𝑡𝑓

𝛿𝑥𝑓 = 𝛿𝑥𝑡𝑓
+ 𝑥∗(𝑡) + 𝛿𝑥(̇𝑡)|𝑡=𝑡𝑓

)𝛿𝑥𝑓 ≈ 𝛿𝑥𝑡𝑓
+ (𝑥(̇𝑡𝑓)∗)𝛿𝑡𝑓   (13) 

substituting (13) into (12) gives rise to 

𝛿𝐽 = 𝐿(. )∗|𝑡=𝑡𝑓
𝛿𝑡𝑓 + [(

𝜕𝐿(.)

𝜕𝑢(𝑡)
)

∗

|
𝑡=𝑡𝑓

] (𝛿𝑢(𝑡) − �̇�(𝑡))𝛿𝑡𝑓      (14) 

Simplifying (14) gives rise to 

𝛿𝐽 ≈ 𝐿(. ) − [ (
𝜕𝐿(.)

𝜕�̇�(𝑡)
𝑥(̇𝑡))

∗

|
𝑡=𝑡𝑓

𝛿𝑡𝑓] + [(
𝜕𝐿(.)

𝜕�̇�(𝑡)
)

∗

|
𝑡=𝑡𝑓

𝛿𝑡𝑓]  

If 𝛿𝐽 = 0 in (14) which is regarded as a necessary condition, then 

𝛿𝐽 ≈ 𝐿(. ) − [(
𝜕𝐿(.)

𝜕�̇�(𝑡)
𝑥(̇𝑡))

∗

|
𝑡=𝑡𝑓

𝛿𝑡𝑓] + [(
𝜕𝐿(.)

𝜕�̇�(𝑡)
)

∗

|
𝑡=𝑡𝑓

𝛿𝑡𝑓] = 0     (15) 

where 

𝐿(. ) = ℋ(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) +
𝜕𝑠(.)

𝜕𝑥(̇𝑡)
𝑥(̇𝑡) +

𝜕𝑠(.)

𝜕𝑡
− 𝜆𝑇(𝑡)𝑥(̇𝑡)      (16) 

Using (16) in (10), (11), and (15), from (10) gives  

 
𝜕

𝜕𝑥(𝑡)
[ℋ(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) +

𝜕𝑠(.)

𝜕𝑥(̇𝑡)
𝑥(̇𝑡) +

𝜕𝑠(.)

𝜕𝑡
−  𝜆𝑇(𝑡)𝑥(̇𝑡)] 

−
𝑑

𝑑𝑥
[

𝜕[ℋ(𝑥(𝑡),𝑢(𝑡),𝜆(𝑡),𝑡)+
𝜕𝑠(.)

𝜕𝑥(̇𝑡)
𝑥(̇𝑡)+

𝜕𝑠(.)

𝜕𝑡
− 𝜆𝑇(𝑡)𝑥(̇𝑡)]

𝜕𝑥
]       (17) 

Using the method akin to [14], one obtains  
𝑑

𝑑𝑡
𝑓(. ) =

𝜕𝑓(.)

𝜕𝑥(𝑡)
𝑥(̇𝑡) +

𝜕𝑓(.)

𝜕𝑦(𝑡)
𝑦(̇𝑡) +

𝜕𝑓(.)

𝜕𝑧(𝑡)
𝑧(̇𝑡)       (18) 

Applying (18) in (17) gives rise to 
𝜕

𝜕𝑥(𝑡)
[ℋ(. ) +

𝜕𝑠(.)

𝜕𝑡
− 𝜆𝑇(𝑡)𝑥(̇𝑡)] −

𝑑

𝑑𝑡
[

𝜕𝑠(.)

𝜕𝑥(𝑡)
− 𝜆𝑇(𝑡)]  

where 
𝜕𝑠(.)

𝜕𝑥(̇𝑡)
, and  

𝜕𝑠(.)

𝜕𝑡
 can combined.  

From (18), the following is established 

(
𝜕𝐿(.)

𝜕𝑥(𝑡)
)

∗
= −𝜆(̇𝑡)          (19) 

It should be noted that (19) is called the co-state equation free of 𝑥(̇𝑡). Also, from (11) 

(
𝜕𝐿(.)

𝜕𝑢(𝑡)
)

∗
= 0 ⟹ (

𝜕𝐿(.)

𝜕𝑢(𝑡)
)

∗
= (

𝜕ℋ(.)

𝜕𝑥(𝑡)
)

∗
= 0       (20) 

where 𝐿(. ) remains as defined in (16).  

A similar version of (20) is given as  

(
𝜕ℋ(.)

𝜕𝜆(𝑡)
)

∗
= −𝑥(̇𝑡).          (21) 

If the system is expressed in state space form (21) becomes the state equation. 

Finally, the boundary condition (15) can be written in Hamiltonian form similar to [21] as 

[ℋ(. ) + (
𝜕𝑠(.)

𝜕𝑥(𝑡)
)

𝑇
− 𝜆𝑇(𝑡)𝑥(̇𝑡) − [

𝜕𝑠(.)

𝜕𝑢(𝑡)
− 𝜆(𝑡)] 𝑥(̇𝑡)]

∗

|
𝑡=𝑡𝑓

𝛿𝑡𝑓   

+ [
𝜕𝑠(.)

𝜕𝑢(𝑡)
− 𝜆(𝑡)]

∗
|

𝑡=𝑡𝑓

= 0          (22) 

Therefore, 

[ℋ(. ) +
𝜕𝑠(.)

𝜕𝑥(𝑡)
]

∗
|

𝑡=𝑡𝑓

𝛿𝑡𝑓 + [[
𝜕𝑠(.)

𝜕𝑥(𝑡)
− 𝜆(𝑡)]]

∗

|
𝑡=𝑡𝑓

𝛿𝑡𝑓 = 0     (23) 
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If (19) through (21) and (23) are solved, the trajectory, 𝑥(𝑡), will be gotten, and the control input, 𝑢(𝑡), that minimizes the 

performance measure/index in (4) be the algorithmic steps given the constraints (3) and (4) then,   

Step 1: Form the Hamiltonian from the optimal control problem. 

Step 2: Compute the co-state in (19).  

Step 3: Determine the control input using (20). 

Step 4: Compute the state value in (21). 

Step 5: Determine the Trajectory in (23). 

Step 6:  Determine the solution to problems (3) and (4) using the values in steps 2 through 5. 

Step 7: Test for convergence. If the convergence condition is satisfied then stop, else, repeat steps 2 through 6.  

 

Operator Based Method 

Over the years, several researchers have worked on the construction of different operators. These operators are introduced 

to either the Conjugate Gradient Method (CGM) as in [2] and [3] or the Quasi-Newton Methods as in [6] of solving 

Optimal Control Problems. The development of the operator requires a broad knowledge of transforming a constrained 

optimal control problem into an unconstrained problem. Let us consider the general optimal control problem by [18] and 

[3] of the form: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽 = ∫ [𝑥𝑇(𝑡)𝑝𝑥(𝑡) + 𝑢𝑇(𝑡)𝑞𝑢(𝑡)]
𝑡𝑓

𝑡0
𝑑𝑡       (24) 

Subject to 𝑥′(𝑡) = 𝑐𝑥(𝑡) + 𝑑𝑢(𝑡),  𝑡0 ≤ 𝑡 ≤ 𝑡𝑓       (25) 

0 ≤ 𝑡0 ≤ 𝑡𝑓           (26) 

To support the operator construction, the following are necessary.  

 

Definition 1: Let ℋ1, ℋ2 be Hilbert spaces over ℛ. A bilinear form of functional 𝑄 on ℋ1 × ℋ2 is a mapping 𝑄: ℋ1 ×
ℋ2 →  ℛ such that for all 𝑥, 𝑥1, 𝑥2 ∈ ℋ1, for all 𝑦, 𝑦1, 𝑦2 ∈ ℋ2 and 𝛼, 𝛽 ∈ ℛ then by [11] the following hold: 

1. Q(𝑥1 + 𝑥2, 𝑦) = 𝑄(𝑥1, 𝑦) + 𝑄(𝑥2, 𝑦)  

2. Q(𝑥, 𝑦1 + 𝑦2) = 𝑄(𝑥, 𝑦1) + 𝑄(𝑥, 𝑦2)  

3. 𝑄(𝛼𝑥, 𝑦) = 𝛼𝑄(𝑥, 𝑦) 

4. 𝑄(𝑥, 𝛽𝑦) = 𝛽𝑄(𝑥, 𝑦) 

5. 𝑄(𝑥, 𝑦 = 𝑄(𝑦, 𝑥) for ℋ1 = ℋ2 = ℋ on ℋ, 𝑄 then 𝑄 is called a bilinear, Hermitian (self-adjoin) form on ℋ 

 

Theorem 1. let ℋ1, ℋ2 be Hilbert spaces and ℋ1 × ℋ2 ∈ ℛ be a bounded bilinear form then, for 𝑥 ∈ ℋ1 and 𝑥 ∈ ℋ2, 𝑄 

has a representation 

Q(x, y) = Q < sx, y > ℋ2          (27) 

where 𝑆: ℋ1 → ℋ2 is a uniquely determined bounded operator. If 𝑇: ℋ → ℋ is a continuous linear operator on the 

Hilbert space ℋ and for fixed 𝑦 ∈ ℋ and 𝑥 ∈ ℋ then, 𝑓𝑦(𝑥) = 〈𝑇𝑥, 𝑦〉ℋ  where 𝑓𝑦  defines a continuous linear functional 

on ℋ. 

The expansion and bilinear form of (27) according to Definition 2.1 gives rise to  

〈𝑧, 𝐴𝑧〉ℋ̂ = ∫ [𝑥1(𝑡)𝑝(𝑡)𝑥2(𝑡) + 𝑢(𝑡)𝑞(𝑡)𝑢2(𝑡) + 𝛼𝑥1
′ (𝑡)𝑥2

′ (𝑡) − 𝛼𝑐𝑥1
′ (𝑡)𝑥2(𝑡) − 𝛼𝑑𝑥1

′ (𝑡)𝑢2(𝑡) − 𝛼𝑐𝑥1(𝑡)𝑥2
′ (𝑡) +

𝑡𝑓

𝑡0

𝛼𝑐2𝑥1(𝑡)𝑥2(𝑡) + 𝛼𝑐𝑑𝑥1(𝑡)𝑢2(𝑡) − 𝛼𝑑𝑢1(𝑡)𝑥2
′ (𝑡) + 𝛼𝑐𝑑𝑢1(𝑡)𝑥2(𝑡) + 𝛼𝑑2𝑢1(𝑡)𝑢2(𝑡) + 𝜆1(𝑡)𝑥2

′ (𝑡) + 𝑥1
′ (𝑡)𝜆2(𝑡) −

𝑐𝜆1(𝑡)𝑥2(𝑡) − 𝑐𝑥1(𝑡)𝜆2(𝑡) − 𝑑𝜆1(𝑡)𝑢2(𝑡) − 𝑑𝑢1(𝑡)𝜆2(𝑡)]𝑑𝑡     (28) 

Suppose 𝜆2(𝑡) = 𝑢2(𝑡) = 0 in (28). This reduces (28) to 

〈𝑧, 𝐴𝑧〉ℋ̂ = ∫ [𝑥1(𝑡)𝑝(𝑡)𝑥2(𝑡) + 𝛼𝑥1
′ (𝑡)𝑥2

′ (𝑡) − 𝛼𝑐𝑥1
′ (𝑡)𝑥2(𝑡) − 𝛼𝑐𝑥1(𝑡)𝑥2

′ (𝑡) + 𝛼𝑐2𝑥1(𝑡)𝑥2(𝑡) − 𝛼𝑑𝑢1(𝑡)𝑥2
′ (𝑡) +

𝑡𝑓

𝑡0

𝛼𝑐𝑑𝑢1(𝑡)𝑥2(𝑡) + 𝜆1(𝑡)𝑥2
′ (𝑡) − 𝑐𝜆1(𝑡)𝑥2(𝑡)]𝑑𝑡        (29) 

〈𝑧, 𝐴𝑧〉ℋ̂ = ∫ [𝑥1(𝑡)𝑝(𝑡)𝑥2(𝑡) − 𝛼𝑐𝑥1
′ (𝑡)𝑥2

′ (𝑡) + 𝛼𝑐2𝑥1(𝑡)𝑥2(𝑡) + 𝛼𝑥1
′ (𝑡)𝑥2

′ (𝑡) − 𝛼𝑐𝑥2(𝑡)𝑢1(𝑡) − 𝛼𝑑𝑥2
′ (𝑡) +

𝑡𝑓

𝑡0

𝛼𝑐𝑑𝑢1(𝑡)𝑥2(𝑡) + 𝜆1(𝑡)𝑥2
′ (𝑡) − 𝑐𝜆1(𝑡)𝑥2(𝑡)]𝑑𝑡        (30) 

From (28), one of the entries of the operator is given as  

𝑢1(𝑡)𝐴21(𝑡) = 𝑢1(𝑡)[−𝛼𝑑𝑥2
′ (𝑡) + 𝛼𝑐𝑑𝑢1(𝑡)𝑥2(𝑡)]       (31) 

Dividing (31) through by 𝑢1(𝑡) implies that 

𝐴21(𝑡) = −𝛼𝑑𝑥2
′ (𝑡) + 𝛼𝑐𝑑𝑢1(𝑡)𝑥2(𝑡)         (32) 

Consequently,  

𝐴31(𝑡) = 𝑥2
′ (𝑡) − 𝑐𝑥2(𝑡)          (33) 

To determine the first component of the operator as in [2] and [3], one assigns  

𝛾(𝑡) = 𝑝(𝑡)𝑥2(𝑡) − 𝛼𝑐𝑥2
′ (𝑡) + 𝛼𝑐2𝑥2(𝑡)       (34) 

and  

𝛽(𝑡) = 𝛼𝑐𝑥2
′ (𝑡) − 𝛼𝑐𝑥2(𝑡)         (35) 

The following function 
 𝛾(𝑡) − 𝐴11(𝑡)

𝛽(𝑡) − 𝐴11
′ (𝑡)

}           (36) 

are continuous function on the closed interval [𝑡0, 𝑡𝑓] also, for 𝑥1(. ) ∈ 𝐴[𝑡0, 𝑡𝑓] such that 𝑥1(𝑡𝑓) = 0 then gives rise to  
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∫ 𝑥1[𝛾(𝑡) − 𝐴11(𝑡)] +
 𝑡𝑓

𝑡0
𝑥1

′ (𝑡)[𝛽(𝑡) − 𝐴11
′ (𝑡)]𝑑𝑡      (37) 

So that 𝛽(𝑡) − 𝐴11
′ (𝑡) is differentiable on the interval [𝑡0, 𝑡𝑓] with 

𝑑

𝑑𝑥
[𝛽(𝑡) − 𝐴11

′ (𝑡)] =  𝛾(𝑡) − 𝐴11(𝑡)        (38) 

On differentiating and evaluating (38), one obtains  

𝐴11
′ (𝑡) − 𝐴11(𝑡) =  𝛽′(𝑡) −  𝛾(𝑡)        (39) 

Setting the LHS of (39) gives rise to 

𝐴11
′ (𝑡) − 𝐴11(𝑡) = 𝑣(𝑡) for 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓        (40) 

Transforming (40) via Laplace as reported by [2] leads to  

𝐴11(𝑡) =
𝑣(𝑠)

𝑠2−1
+

𝑛0(𝑠)

𝑠2−1
+

𝑚0

𝑠2−1
         (41) 

Equivalently, on solving (41) can then be written as 

∫ 𝑣(𝜏)𝑆𝑖𝑛ℎ(𝑡 − 𝜏)𝑑𝜏 + 𝑛0𝐶𝑜𝑠ℎ 𝑡 + 𝑚0𝑆𝑖𝑛ℎ 𝑡
𝑡

𝑡0
        (42) 

One needs to determine the prescribed constants in a manner akin to the method used in [17] and [5] as 

𝑛0 = 𝑝𝑥(0) − 𝛼𝑐𝑥′(0) + 𝛼𝑐2𝑥(0)         (43) 

𝑚0 =
1

𝑆𝑖𝑛ℎ 𝑡𝑓
[[𝑝𝑥(𝑡𝑓) − 𝛼𝑐𝑥′(𝑡𝑓) + 𝛼𝑐2𝑥(𝑡𝑓) − ∫ 𝑣(𝑠)𝑆𝑖𝑛ℎ(𝑡𝑓 − 𝑠)𝑑𝑠] − [𝑝𝑥(0) −  𝛼𝑐𝑥′(0) + 𝛼𝑐2𝑥(0)]𝐶𝑜𝑠ℎ 𝑡𝑓

𝑡

𝑡0
] 

            (44) 

On substituting (43) and (44) in (41), it gives 

𝐴11(𝑡) = −[𝛼𝑥′(0) − 𝛼𝑥(0)]𝑆𝑖𝑛ℎ 𝑡

+ ∫[𝛼𝑥′(𝑠) − 𝛼𝑥(𝑠)]𝐶𝑜𝑠ℎ (𝑡 − 𝑠)𝑑𝑠 −

𝑡

𝑡0

∫[𝑝𝑥(𝑠) − 𝛼𝑐𝑥′(𝑠) + 𝛼𝑥𝑐2(𝑠)]𝑆𝑖𝑛ℎ (𝑡 − 𝑠)𝑑𝑠

𝑡

𝑡0

+ [𝑝𝑥(0) − 𝛼𝑐𝑥′(0) + 𝛼𝑐2𝑥(0)]𝐶𝑜𝑠ℎ 𝑡 + 
𝑆𝑖𝑛ℎ 𝑡

𝑆𝑖𝑛ℎ 𝑡𝑓 
[[𝑝𝑥(𝑡𝑓) − 𝛼𝑐𝑥′(𝑡𝑓) + 𝛼𝑐2𝑥(𝑡𝑓)] + [ 𝛼𝑥′(0) + 𝛼𝑐𝑥(0)]𝑆𝑖𝑛ℎ 𝑡𝑓 − ∫ [ 𝛼𝑥′(𝑠) + 𝛼𝑐𝑥(𝑠)]

𝑡

𝑡0
𝐶𝑜𝑠ℎ (𝑡𝑓 − 𝑠)𝑑𝑠 +

∫ [𝑝𝑥(𝑠) − 𝛼𝑐𝑥′(𝑠) + 𝛼𝑐2𝑥(𝑠)]
𝑡

𝑡0
𝑆𝑖𝑛ℎ (𝑡𝑓 − 𝑠)𝑑𝑠 − [𝑝𝑥(0) − 𝛼𝑐𝑥′(0) + 𝛼𝑐2𝑥(0)]𝐶𝑜𝑠ℎ 𝑡𝑓]    (45)  

Repeating the same procedures from (34) to (44) that led to (45) in a similar manner, one obtains the components 𝐴12(𝑡), 

𝐴22(𝑡), and 𝐴32(𝑡) as 

𝐴22(𝑡) = 𝑞𝑢(𝑡) + 𝛼𝑑2𝑢(𝑡)          (46) 

𝐴32(𝑡) = −𝑢(𝑡)           (47) 

and 

𝐴12(𝑡) = 𝛼𝑑𝑢(0)𝑆𝑖𝑛ℎ 𝑡𝑓 + ∫ [−𝛼𝑑𝑢(𝑠)𝐶𝑜𝑠ℎ (𝑡𝑓 − 𝑠)]𝑑𝑠
𝑡

𝑡0
− ∫ [𝛼𝑐𝑑𝑢(𝑠)𝑆𝑖𝑛ℎ (𝑡𝑓 − 𝑠)]𝑑𝑠

𝑡

𝑡0
+ [𝛼𝑐𝑑𝑢(0)𝐶𝑜𝑠ℎ 𝑡] +

𝑆𝑖𝑛ℎ 𝑡

𝑆𝑖𝑛ℎ 𝑡𝑓 
[𝛼𝑐𝑑𝑢(𝑡𝑓)𝑆𝑖𝑛ℎ (𝑡𝑓)] + ∫ [𝛼𝑑𝑢(𝑠)𝐶𝑜𝑠ℎ (𝑡𝑓 − 𝑠)]𝑑𝑠

𝑡

𝑡0
+ ∫ [𝛼𝑑𝑢(𝑠)𝑆𝑖𝑛ℎ (𝑡𝑓 − 𝑠)]𝑑𝑠 − 𝛼𝑐𝑑𝑢(0)𝐶𝑜𝑠ℎ 𝑡𝑓

𝑡

𝑡0
  (48) 

Finally,  

𝐴23(𝑡) = −𝑑𝜆(𝑡)          (49) 

 

𝐴33(𝑡) = 0            (50) 

and 𝐴13(𝑡) can be determined thus 

𝐴13(𝑡) =

[−𝜆(0)𝑆𝑖𝑛ℎ 𝑡𝑓] + ∫ [𝜆(𝑠)𝐶𝑜𝑠ℎ (𝑡𝑓 − 𝑠)]𝑑𝑠
𝑡

𝑡0
− ∫ [𝑐𝜆(𝑠)𝑆𝑖𝑛ℎ (𝑡𝑓 − 𝑠)]𝑑𝑠

𝑡

𝑡0
+ [𝑐𝜆(0)𝐶𝑜𝑠ℎ 𝑡𝑓] +

𝑆𝑖𝑛ℎ 𝑡

𝑆𝑖𝑛ℎ 𝑡𝑓 
[𝑐𝜆(𝑡𝑓) +

𝜆(0)𝑆𝑖𝑛ℎ 𝑡𝑓]            (51) 

− ∫ [𝜆(𝑠)𝐶𝑜𝑠ℎ (𝑡𝑓 − 𝑠)]𝑑𝑠
𝑡

𝑡0
+ ∫ [𝑐𝜆(𝑠)𝑆𝑖𝑛ℎ (𝑡𝑓 − 𝑠)]𝑑𝑠

𝑡

𝑡0
  

+[𝑐𝜆(0)𝐶𝑜𝑠ℎ 𝑡] − [𝜆(0)𝐶𝑜𝑠ℎ 𝑡𝑓]         (52) 

(𝐴𝑧)(𝑡) = (

𝐴11𝑥(𝑡) 𝐴12𝑢(𝑡) 𝐴13𝜆(𝑡)

𝐴21𝑥(𝑡) 𝐴22𝑢(𝑡) 𝐴23𝜆(𝑡)

𝐴31𝑥(𝑡) 𝐴32𝑢(𝑡) 𝐴33𝜆(𝑡)
)        (53) 

Hence, (53) is the operator representing the bilinear form of (30). The operator (53) replaces the Hessian matrix in the 

ECGM as opined by [21], [2], and [3] also, the Newton's Method as found in [6].  

 

Runge-Kutta Method of Solving First-Order Differential Equations 

The Runge-Kutta method for solving first-order differential equations has been widely used in numerical analysis 

according to [12] and affords a degree of accuracy. It is a step-by-step process where a table of function values for a range 

of independent variables is accumulated. It considers a general form of y
0 

= 𝑓(𝑥, 𝑦) with the initial conditions 𝑥 = 𝑥0, 

𝑦 = 𝑦0, 𝑦′ = 𝑦0
′  and computed as follows: 

𝑘1 = ℎ𝑓(𝑥0, 𝑦0)           (54) 
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𝑘2 = ℎ𝑓 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑘1)          (55) 

𝑘3 = ℎ𝑓 (𝑥0 +
1

2
ℎ, 𝑦0 +

1

2
𝑘2)          (56) 

𝑘4 = ℎ𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘3)          (57) 

and the argument ∆𝑦0 in y-values from 𝑥0 to 𝑥1 given as 

∆𝑦0 =
1

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)         (58) 

and finally, 

𝑦1 = 𝑦0 + ∆𝑦0.           (59) 

 

EXTENDED RUNGE-KUTTA METHOD ALGORITHM  

The application of the ERKM algorithm to optimal control problems requires an in-depth knowledge of classical 

optimization, Optimal control study, and Numerical analysis. The ERKM algorithm can be summarized as follows: 

Step 1: Convert the constrained optimal control problem to an unconstrained one via the Hamiltonian method. 

Step 2: Determine the first-order optimality conditions. 

Step 3: Determine the two-point or multipoint boundary conditions. 

Step 4: Embed the boundary conditions in the algorithm of the Runge-Kutta method to determine the numerical value of 

the state and the co-state variables. 

Step 5: If 
𝜕ℋ

𝜕𝑢
≤ 0.05 then stop else, go to step 6. 

Step 6: Update 𝑢𝑖+1 and repeat steps 2 through 5. 

 The ERKM algorithm fuses the strengths of the operator-based method and Runge-Kutta methods to form a new 

method for the solution of the OCP.   

 

PROBLEMS, RESULTS, AND DISCUSSIONS 

This section presents some optimal control problems to test the efficiency and robustness of the Extended Runge-Kutta 

Method Algorithm. The results generated shall be discussed via a viz some convergence criteria. 

 

Problem 1: Lagrange Form of Optimal Control Problem without Delay as in [11] and [13]. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑥,𝑢,𝜆)𝐽 = 0.5 ∫ [𝑥𝑇(𝑡)𝑃𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)]
1

0
𝑑𝑡  

Subject to  �̇�1(𝑡) = 𝑥2(𝑡) 

  �̇�2(𝑡) = 𝑥1 + 𝑢(𝑡) 

𝑥1(0) = 1,   𝑥2(0) = 0.5,  𝜆1(0) = 1, and  𝜆2(0) = 0 

𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 , 𝑃 = (
1 0
0 10

), and 𝑅 = 1. 

 

Problem 2: Lagrange Form of Optimal Control Problem [9] with the weighted matrix as the coefficient 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑥,𝑢,𝜆)𝐽 = ∫ [𝑥𝑇(𝑡)𝑃𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)]
1

0
𝑑𝑡  

Subject to �̇�1(𝑡) = 2𝑥2(𝑡) 

�̇�2(𝑡) = −𝑥1(𝑡) − 3𝑥2(𝑡) + 𝑢(𝑡) and 𝑡0 ≤ 𝑡 ≤ 𝑡𝑓 

𝑥1(0) = 2,   𝑥2(0) = 1,  𝜆1(0) = 1,  𝜆2(0) = 0, 𝑅 = 1 and 𝑃 = (
1 0
0 2

) 

 

Problem 3: Lagrange Form of Optimal Control Problem 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝑥,𝑢,𝜆)𝐽 = ∫ [𝑥𝑇(𝑡)𝑃𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)]
1

0
𝑑𝑡  

Subject to �̇�1(𝑡) = 2𝑥2(𝑡) 

   �̇�2(𝑡) = −𝑥1(𝑡) − 3𝑥2(𝑡) + 𝑢(𝑡) 

𝑥1(0) = 2,   𝑥2(0) = 1,  𝜆1(0) = 1,  𝜆1(0) = 0, 𝑅 = 1 and 𝑃 = 0. 
The solutions to Problems 1, 2, and 3 are presented in Tables 1, 2, and 3 respectively. The results, 𝐽∗,  are compared with 

the analytic solutions, 𝐽 𝐸𝑥𝑎𝑐t, of each test problem showing the error differences, 𝐽 𝐸𝑟𝑟𝑜𝑟.  

 

Numerical Results of Tested Problems 
Table 1 Numerical solution of Problem 1 

𝒕 𝒙𝟏
∗  𝒙𝟐

∗  𝝀𝟏
∗  𝝀𝟐

∗  𝒖∗ 𝑱∗ 𝑱 𝑬𝒙𝒂𝒄t 𝑱 𝑬𝒓𝒓𝒐𝒓 

0.2 1.96750 0.10012 1.88670 0.13362 -0.06681 2.06778 2.35203 0.28425 

0.4 1.94491 0.00121 1.27682 -0.25904 0.12952 2.34818 2.51499 0.16651 

0.6 1.89990 -0.10530 1.10243 -0.39259 0.196295 2.21704 2.70353 0.48649 

0.8 1.74840 -0.41960 0.34615 -0.46923 0.234615 2.57666 2.66815 0.09149 

0.9 1.73840 -0.40133 0.20413 -0.29994 0.14997 2.48544 2.55687 0.07143 

1.0 1.74821 -0.40261 0.001935 -0.000240 0.000220 2.33862 2.32716 0.01146 
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Table 2 Numerical solution of Problem 2 

𝒕 𝒙𝟏
∗  𝒙𝟐

∗  𝝀𝟏
∗  𝝀𝟐

∗  𝒖∗ 𝑱∗ 𝑱 𝑬𝒙𝒂𝒄t 𝑱 𝑬𝒓𝒓𝒐𝒓 

0.2 2.11987 0.030027 4.00144 2.38901 -2.38901 4.09298 4.19442 0.10144 

0.4 2.10189 -0.27197 2.70101 1.29975 -1.29975 4.13927 4.19442 0.05485 

0.6 1.97501 -0.24013 1.66890 0.66046 -0.66046 4.08269 4.19442 0.11143 

0.8 1.94334 -0.02525 0.80144 0.27038 -0.27038 4.18971 4.19442 0.00441 

0.9 1.94776 0.13078 0.41104 0.12711 -0.12711 4.16692 4.19442 0.02720 

1.0 1.99899 0.31406 0.00101 0.00012 -0.00012 4.19319 4.19412 0.00093 

 
Table 3 Numerical solution of Problem 3 

𝒕 𝒙𝟏
∗  𝒙𝟐

∗  𝝀𝟏
∗  𝝀𝟐

∗  𝒖∗ 𝑱∗ 𝑱 𝑬𝒙𝒂𝒄t 𝑱 𝑬𝒓𝒓𝒐𝒓 

0.2 1.013795 1.11296 0.97688 0.99867 -0.99867 -0.92256 -0.77017 0.15239 

0.4 1.37152 0.96443 1.34522 1.00504 -1.00504 -1.09117 -0.77017 0.32100 

0.6 1.44435 0.31035 1.51071 0.73924 -0.73924 -1.14535 -0.77017 0.37518 

0.8 1.75658 -0.021961 1.93218 0.39676 -0.39676 -0.89679 -0.77017 0.12662 

0.9 1.75238 -0.24013 1.83951 0.20013 -0.20013 -0.83248 -0.77017 -0.06231 

1.0 1.71758 -0.41616 1.85082 0.000102 - 0.000102 -0.77041 -0.77017 -0.00024 

 

Discussion on the Performance of ERKM Algorithm 

It can be seen from Tables 1, 2, and 3 that the three tested problems have similar characteristics:  

(i) value of the state and Performance Measure 𝑥∗(𝑡) and 𝐽∗(𝑡) changes for different values of 𝑡 as 𝑡 ≈ 𝑡𝑓  

(ii) the values of the control 𝑢(𝑡) decreased as 𝑡 was approaching the terminal point i.e. 𝑡 ≈ 𝑡𝑓  

(iii) as 𝑡 = 𝑡𝑓, then |𝐽 𝐸𝑟𝑟𝑜𝑟| ≈ 0. 

 

CONCLUDING REMARKS 

From the results in the tables above, one can conclude that the method i.e. the Extended Runge-Kutta method is stable, 

robust, and reliable as it can handle optimal control problems with multiple constraints. The values of 𝑡 were fixed in each 

one-dimensional cycle while the step size was updated with the formula ℎ𝑛+1 = ℎ𝑛 + ℎ𝑛−1 and stopping conditions 

𝑢(𝑡) ≤ 0.001 as 𝑡 = 𝑡𝑓 for the three problems. 
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