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Abstract 

Proximity spaces belongs to a very important section of topological spaces. Many important properties like fiberwise 

proximity spaces have been studied in this context. In present paper authors have been introduced absoluteness in R-

proximity spaces. After introduction several results and new theorems are being proved as a conclusion of this concept. 
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INTRODUCTION 

Extremally disconnected spaces play a crucial role in the theory of Boolean algebras, in axiomatic set theory and in some 

branches of functional analysis as well, in the classical context, there are several methods of obtaining the absolute of a 

regular topological space. In one of these methods, the absolute of a regular topological space X is realized as the Stone 

space of the complete Boolean algebra of the family of regular closed sets; while in another, the absolute is obtained as a 

dense subspace of an extremally disconnected subspace E(X) of the product space {ǎ:aU (X)} ,where ǎ is the discrete 

topological space and U (X) is the collection of all regular covers of X.  

In the present paper, the proximal absolute (p-absolute) of an R-proximity space is obtained as a dense proximal 

subspace of the proximity space T(X), a closed proximal subspace of the product proximity space T0 of all discrete 

proximity spaces. 

 

SOME PRELIMINARY CONCEPTS 
In the present section, by X we shall mean an R- proximity space, RC(X) will denote the set of all p-regular covers of X, 

RC0(X) is the refined and directed family of all p-regular covers. For   RC0(X), α̂  denotes the discrete proximity 

space. Further, T0(X) is the collection of proximal threads in RC0(X), endowed with the induced proximity by T0. Let 

.

0X  

be the set of all distinguished proximal threads in RC0(X) together with the induced proximity by T0. 

Definition 1.1: A mapping 
.

0
0X : X X   of the proximity space 

.

0X  of all distinguished proximal threads in RC0(X) 

into the R-proximity space X defined by
0

X () = ∩{A : A}, is called a natural mapping generated by the family 

RC0(X). 

Remark 1.1: If we consider RC(X), we obtain the proximity space T(X) of all proximal threads in RC(X) and the 

proximity space 
.

X  of all distinguished proximal threads in RC(X). 

Obviously, 
.

X  ⊆ T(X) ⊆ T0 =     XRCα,α̂ . 
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Definition 1.2: A proximally continuous mapping f from a proximity space X onto a proximity space Y is called p-

irreducible if Y is not the image under f of a closed set F in X, other than X. 

Definition 1.3: A proximity space X is called extremally disconnected if for every open set U in () in X the set U  is 

not only closed but also open in X with respect to the induced topology (). 

Definition 1.4: A proximity space 

.

X  is called a proximal absolute or p-absolute of the R-proximity space X if, 

.

X  is a 

p-irreducible perfect pre image of X and every p-irreducible perfect pre image of 

.

X  is p-homeomorphic to 

.

X . 

Theorem 1.1: Let f : X → Y be a p-irreducible, p-closed mapping and f(X) =Y. Then for every open set U in X, the set 

 1 #f f U
 is open, non-empty, is contained in U and is proximally dense in U, where  #f U = {y  Y : 

1f 
y << U}. 

Proof: Obviously,  1 #f f U
 is non-empty. Let x   1 #f f U

. Then f(x)   #f U . 

Hence 
1f 

f(x) << U or 
1f 

(f(x)) X-U. Since f is p-closed,             f(
1f 

(f(x)))      f(X-U) or f(x)     f (X-U) i.e. f(x) << Y 

– f(X-U) or f(x) << 
#f (U), since 

#f (U) = Y – f(X-U). Thus, by the p-continuity of f, x ⊆ 
1f 

(f(x)) << 
1f  #f (U) and 

hence                   x << 
1f  #f (U). Consequently, 

1f  #f (U) is open in the induced topology. 

Next, we must show that 
1f  #f (U) ⊆ U. Let x  

1f  #f (U) or x  
1f 

(Y – f(X-U)). So, f(x)  Y – f (X-U). This gives 

x  X-U or x    X-U or x << U. Consequently, 
1f  #f  (U) ⊆ U. That 

1f  #f  (U) is proximally dense in U, follows by 

using the fact that for any open set 
'U  contained in U, 

#f (
'U ) ≠ . 

Result 1.1: Let f: X → Y be a p-irreducible, p-closed mapping. Then f U  = 
#f  U  for every open set U in X and the 

image of every p-regular closed set in X is a p-regular closed set in Y. 

Result 1.2: A dense proximal subspace X0 of an extremally disconnected R-proximity space X is also extremally 

disconnected. 

 

ABSOLUTE OF R-PROXIMITY SPACES 
 

Theorem 2.1: Let X be a R-proximity space and RC(X) is the family of all p-regular covers of X. Consider the Tychonoff 

product T0 =     XRCα,α̂
0  

.Then 0X T(X) T


  . Suppose that 

.

X  and T(X) are assigned the subspace 

proximity induced by T0. Then the following hold- 

(i) T(X) is closed in T0; 

(ii)  T(X) is compactum (compact and separated); 

(iii) (iii) the subspace 

.

X    T(X) is proximally dense in T(X). 

Proof: (i) Let 0  T0 =     XRCα,α̂
0  and           0 ∈  

0T
T(X) . We must show that 0  T(X) i.e. 0 is a 

proximal thread. Let 
1 2α , α   RC(X) and 2 1α > α . Let us consider the coordinates 

1

0A


and 
2

0A


 of 0 in the discrete 

proximity spaces 
1α̂  and 

2α̂  respectively, i.e. {
1

0A


} = 0 ∩ 
1α ,

 
 {

2

0A


} = 0 ∩ 
2α . It is required to show that 

2

0A


⊆ 
1

0A


. Let     N (
1

0A


, 
2

0A


) be a proximal neighborhood of 0 in T0. Since 0   
0T

T(X) , then every 

proximal neighborhood of 0 in T0 meets T(X). Let  be a member in the intersects T(X) ∩ N (
1

0A


, 
2

0A


). It follows 

that  is a proximal thread and 
1

0A


, 
2

0A


  . Since 
2 1α > α , it follows that 

2

0A


⊆ 
1

0A


. 

(ii) Obvious. 

(iii) Follows from the fact that  
.

0A X  = A0, 

where 0A  = {  T(X): A0  }, A0 = {  
.

X  : A0  }. 

Theorem 2.2: A binary relation 
*
 on P(

.

X ) defined by: for 𝒜, ℬ  P(
.

X ) “𝒜 
*
 ℬ if and only if there exist A, B  

P(
.

X ), A, B  R(X) such that 𝒜  A, ℬ  B and A     B” satisfies the following properties –  
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(i) 
* 
is symmetric; 

(ii) (𝒜  ℬ) 
* 
C iff 𝒜 

*
 C and ℬ 

*
 C;  

(iii) 𝒜  ℬ ≠  implies 𝒜  Π*
 ℬ;  

where A = {  
.

X  : A  }. 

Proof: Suppose (𝒜  ℬ) 
*
 C. To show 𝒜 

*
 C and ℬ 

*
 C. Since (𝒜  ℬ) 

*
 C, there exist A, B  P (

.

X ) such 

that (𝒜  ℬ)  A,  C  B and A    B i.e. 𝒜  A, ℬ  A , C  B and A    B. It follows that 𝒜 
*
 C and ℬ 

*
 C. 

Conversely, suppose that 𝒜 
*
 C and ℬ 

*
 C. Then there exist A, B, C, D  P (

.

X ), where A, B, C, D ∈ R(X) 

satisfying 𝒜  A, C  B and A    B. Also, ℬ  C , C  D and C     D. Since A     B and C    D, we get (A  C), (B 

 D). Now, 𝒜  A, ℬ  C imply 𝒜  ℬ  A  C and    C  B, C  D gives C  B  D. It follows that (𝒜 

 ℬ) 
*
 C.   

Theorem 2.3: Let (X, δ) be a R-proximity space. If RC(X) is the family of all p-regular covers of X, 
.

X  is the space of 

all distinguished proximal threads in RC(X) and 
.

X : X X   is the natural mapping. Then, for every p-regular closed 

set A0  R(X), we have equalities: 

(a)  X 0 0A A  ; 

(b)  #

X 0 0A IntA  , where    # -1

X 0 X 0A x X: x A     . 

Proof: Let 0ξ A . Then 
0A ξ . But by the definition of 

X X 0, ξ {A: A ξ} {x} A     
 
i.e.            

X 0ξ A  . Thus, 

 X 0 0A A 
 

                                                          (1)
 

Conversely, let 
0 0x A .Then there exist a proximal thread 0ξ  distinguished at 0x , for which 

0 0A ξ  i.e. 0ξ X


 , 

0 0A ξ  and 
0 0{x } {A: A ξ }  . Thus 0 0ξ A and 

X 0 0ξ {x }  . Hence  0 X 0A A
                       

(2) 

From (1) and (2) 

 X 0 0A A  . 

(b) Let 
0 0x IntA . Then 

0 0x << IntA  and 
0 0A α . We must show that  #

0 X 0x A . Let us consider any 

distinguished proximal thread ξ , for which 
X 0ξ {x }   i.e.   

0{x } {A: A ξ}  . The set 
0 0A α  represents a       

distinguished proximal thread. Hence 0ξ A . But  
.

-1

X 0 0x ξ X : {A : A ξ} {x }     so that

-1

X 0 0x A  . This gives  #

0 X 0x A . Thus,  #

0 X 0IntA A . 

Conversely, let  #

0 X 0x A . Then by definition,  
.

-1

X 0 0x ξ X : {A : A ξ} {x }      0A . Then 

0A ξ  for every 
-1

X 0ξ x . 

We must show that
0 0x IntA . It suffices to show that ξ α  consists of exactly one element for each 

0α RC(X). 

Suppose that 
0α RC(X) is such that

0 0A α . To the contrary, assume that
0 0x IntA . We would have

'

0 0A α , 

'

0 0A A  for which
'

0 0x A . Then there exists a distinguished proximal thread 
'

0ξ  such that 

' ' '

0 0 0 0{x } {A : A ξ }   and
' '

0 0A ξ . Since 0α RC(X). Thus, 
' -1

0 X 0ξ x  and
' '

0 0A ξ . Also, as

' -1

0 X 0ξ x , 
'

0 0A ξ . Thus we obtain,
'

0 0 0A ξ α , 
' '

0 0 0A ξ α , 
'

0 0A A , which is a contradiction to the 

fact that 
'

0ξ  is a proximal thread iff 
'

0ξ  is a xp-ultrafilter. Hence
0 0x IntA . Thus  #

X 0 0A IntA  . 

Consequently,  #

X 0 0A IntA  . 
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Theorem 2.4: If X is a R-proximity space, then the natural mapping 
.

X : X X   is p-continuous. 

Proof: Let A, B  P(X) such that A    B, for the p-continuity of 
X , it is  sufficient to show that 

-1

X (A) -1

X (B)  in 

.

X . Now A     B implies A <<  X-B. Since X is a R-proximity space, there exist C, D, U  P(X) such that A <<  C
0
  C 

<<    X-U <<  D <<  X-B. Then A <<  #

X C   C <<  X-U <<  D <<  X-B, since  # 0

X 0A = IntA=A

. This gives 
-1

X (A)   C (by the definition 
#

X ).  Now, X-U <<  X-B i.e. B <<  U. 

Similarly, since B <<  U
0
  U, it follows that 

-1

X (B)   U. Since C  U, therefore 
-1

X (A)  
-1

X (B) . Hence the map 

.

X : X X   is p-continuous.  

Theorem 2.5: Let (X, ) be a R-proximity space. Then the natural mapping 
.

X : X X   is a p-irreducible and 

compact. 

Proof: To show that 
X   is compact. Let 

0x  X. It is required to show that the subspace 
-1

X 0x  is compact. Since 

T(X) is compact, it suffices to show that 
-1

X 0x  is closed in T(X). It is sufficient to show that   
-1

X 0x  imply                      

  
-1

X 0x . Now, since 
X  is p-continuous and   

-1

X 0x , therefore 
X (ξ)   

-1

X X 0x   or 
X (ξ)    0x  

or 
X (ξ) = {A : A  } =  0x  or 

0x  A, A  . Thus   
-1

X 0x . Hence 
-1

X 0x  is closed. The 

irreducibility of 
X  is implied by theorem 1.1. 

Theorem 2.6: If X is a R-proximity space, then the natural mapping 
.

X : X X   is a p-irreducible perfect mapping 

onto X.   

Proof: The p-continuity, compactness, and p-irreducibility of 
X  have already been shown in above theorem. It remains 

to show that 
X  is p-closed. It suffices to show that 𝒜 

*
 ℬ implies 

X (𝒜)  
X (ℬ), where 𝒜, ℬ  P (

.

X ). 

Suppose 𝒜 
*
 ℬ, then, there exist A, B  P (

.

X ) such that 𝒜  A, ℬ  B and A    B. Now, 𝒜  A implies that 

X (𝒜)  
X (A) or 

X (𝒜)  A (since            
X (A) = A). Similarly, 

X (ℬ)  B. Since A    B, it follows that 

X (𝒜)  
X (ℬ). Hence the map 

X  is p-closed. 

Theorem 2.7: Let f: X → Y be a p-irreducible, p-open mapping and f(X) = Y. If A1, A2 are p-regular closed sets in X for 

which f A1 = f A2, then A1 = A2. 

Proof: Since A1, A2 are p-regular closed sets, therefore, by definition, A1 = 
1Int A , A2 = 2Int A  . Using the result 2.7, 

f A1 = f (
1Int A ) =  #

1f IntA ,                

f A2 = f (
2Int A ) =  #

2f IntA .                                                  

Also, 
1f 

(
#f (Int A1))  

1f 
(Int f (A1))  A1, 

1f 
(

#f (Int A2))  
1f 

(Int f (A2))  A2. 

Since the set 
1f 

(
#f (Int A1)) is dense in A1 and 

1f 
(

#f (Int A2)) is dense in A2, we have 

1f 
(

#f (Int A1)) =   1

1f Int f A
 = A1, 

1f 
(

#f (Int A2)) =   1

2f Int f A
 = A2. 

But by the equality f A1 = f A2 imply that Int f (A1) = Int f (A2). Hence using above, we obtain A1 = A2.  

Theorem 2.8: Let X be a R-proximity space and let RC(X) be the family of all p-regular covers of X. Then 

(i) T(X) is an extremally disconnected compactum, 

(ii) 
.

X  is an extremally disconnected completely regular proximity space. 

(iii) 
.

X  is a proximal absolute of X. 
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Proof: (i) Let G be an open set in T(X). It is to be shown that  
T(X)

G  is open in T(X). Since 
.

X  is proximally dense in 

T(X), then  

 
T(X)

T(X)
T(X) X

G G X G X


     
          

.           (1)    

Let us write A1 = 
X

X

G X


  
   
  

 and take A2 the complement of A1 in X. 

Consider 0 = {A1, A2} the p-regular cover of X, since both A1 and A2 are p-regular closed sets in X. Let A1 = {  
.

X  

: A1  }, A2 = {  
.

X  : A2  } be clopen sets in 
.

X . We know that 
X (A1) = A1. Now A1 is a p-regular closed 

sets in 
.

X  and 
X (A1) = 

X

X

G X


  
   
  

, where 
X  is perfect and p-irreducible, therefore 

X

G X


 
 
 

= A1. 

But  1
T(X)

A  = 1A , 1A
 
is a clopen set in T(X); hence 1A  =  1

T(X)
A  = 

T(X)
X

G X


  
     

=  
T(X)

G . 

Consequently,  
T(X)

G  is clopen in T(X).
    

 

(ii) Since T(X) is extremally disconnected, the dense proximal subspace 
.

X  is also extremally disconnected. That 
.

X  is 

completely regular follows from the fact that it is a separated proximity space. 

(iii) Follows from the fact that 
.

X  is a dense proximal subspace of an extremally disconnected compact separated 

proximity space.  
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