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Abstract 

An (s, S) inventory system with service facilities has been examined in this study. Demands arrive as a Poisson process 

with parameter 𝜆 (>0) to an infinite capacity pool at any given time t. When the Inventory is greater than the buffer size a 

customer will transfer to the buffer with a rate 𝜙. The service time is considered to be exponentially distributed with 

parameter 𝜇. The inventory level is likewise presumed to be S at first. When the inventory level reaches s as a result of 

service, or due to perishability of the inventory, a replenishment order is taken place. With the parameter 𝛽, the lead time 

is exponentially distributed. In this final model, a stability condition based on that same system performance measure has 

been investigated. Some numerical illustrations are provided and sensitivity analyses are made concerning different 

parameters involved in the present system. 
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INTRODUCTION 

The indefinite lifetime of products while in storage is one of the fundamental presumptions implicit in the majority of 

inventory systems [1-2]. Perishability's impact on many inventory systems, yet, cannot be disregarded. Foods, film for 

cameras, and electronics are common examples of products with a finite lifespan. In each of these cases, leaving 

perishability out of the model results in an erroneous performance evaluation of the inventory system [3-5]. 

In the last few years, experts have paid a lot of attention to the analysis of perishable inventory systems. Most 

models established an instantaneous supply of order in the case of continuous review perishable inventory models with 

random life periods for the goods [6-7]. 

Manuel et al. [8-9], Padmavathi et al. [10], Radhamani et al. [11], and Yadavalli et al. [12] analyzed customers who 

were unable to meet their demands either the things they needed were unavailable or all the servers were occupied. These 

consumers join an infinitely large orbit and receive their services at random intervals. The service duration is exponential, 

and the positive and negative requests follow Markovian Arrival Process (MAP). 

A perishable inventory system with a service facility and a finite supply is analyzed by Lawrence et al. [13]. They 

assumed that the lead time and service time follow a phase-type distribution and those demands are produced by a finite 

homogenous population. 
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On the other hand, this study has looked at a (s, S) inventory system that includes service facilities. An infinity pool 

capacity was considered. We derived and obtained a stability condition based on that same system performance measure. 

Some numerical illustrations are provided and sensitivity analyses are made concerning different parameters involved in 

the present system. The model has been illustrated in Fig. 1. 

 
Fig. 1 The proposed perishable stochastic inventory system without reneging 

 

NOTATIONS AND ASSUMPTIONS OF THE INVENTORY SYSTEM 
The notation for the formulation of the inventory model is the following: 

i) P(t) = Number of customers in the pool at time t 

ii) B(t) = Number of customers in the buffer at time t 

iii) I(t) = Inventory level at time t 

iv) 𝜆 = Arrival of demands follows the Poisson process 

v) 𝜇 = Service time follows an exponential distribution 

vi) β = Lead time is exponentially distributed 

vii) Initially, the system is in order level S 

viii) Replenishment takes place when the inventory level is depleted to re-order level s 

It is assumed that, if I(t) > B(t), the primary arrival is directed to the buffer from the pool with a rate 𝜙. 

ix) 𝜃 = Perishable rate 

x) 𝑒 is a unit column vector. 

 

MODEL AND ANALYSIS 

An (s, S) inventory system with service facilities has been examined in this study. Demands arrive as a Poisson process 

with parameter 𝜆 (>0) to an infinite capacity pool at any given time t. Pooled customers are transferred to the buffer taken 

for service with a rate 𝜙. With parameter 𝜇, the service time is considered to be exponentially distributed. The inventory 

level is likewise presumed to be S at first. When the inventory level reaches s as a result of service, a replenishment order 

is placed. With the parameter 𝛽, the lead time is exponentially distributed. With parameter 𝜃, an item from inventory may 

expire. The whole process can be expressed in the flowchart given in Fig. 2. 

 
Fig. 2 Flowchart of the perishable stochastic inventory system without reneging 
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MATHEMATICAL TERMINOLOGY 

Here {P(t), I(t), B(t) = (i, j, k)|0 ≤ i ≤ ∞;0 ≤ j ≤ S;  0 ≤ k ≤ S} formed a three-dimensional Markov process with state 

space- 

E = E1 × E2 × E3 

with E1 = {0,1,… .∞}; E2 = {0,1,… . S}; E3 = {0,1,… . S} 
 

THE INFINITESIMAL GENERATOR OF THE PROCESS 

A ̃  =  (a(i, j, k: l, m, n); (i, j, k), (l, m, n) ∈ E ) can be obtained using the following arguments- 

1. The arrival of the demand makes a transition from- 

(i, j, k) → ( l = i + 1,m = j; n = k ) if 0 ≤ i ≤ ∞; 0 ≤ j ≤ S; 0 ≤ k ≤ S 
2. The pool customer makes a transition to buffer leaving the pool size less by one as a first come first serve basis. 

(i, j, k) → ( l = i − 1,m = j; n = k + 1 ) if  1 ≤ i ≤ ∞;  1 ≤ j ≤ S; 0 ≤ k ≤ S − 1 
3. When B(t) ≤ 𝐼(𝑡), perishability of inventory is a transition reducing the size of the inventory by one unit. 

(i, j, k) → ( l = i,m = j − 1; n = k ) if  0 ≤ i ≤ ∞; 1 ≤ j ≤ S;  0 ≤ k ≤ S − 1 
4. If the inventory and buffer are the same size and greater or equal to one then service occurred.   

(i, j, k) → ( l = i,m = j − 1; n = k − 1 ) if 0 ≤ i ≤ ∞;  1 ≤ j ≤ S;  1 ≤ k ≤ S 
5. Replenishment takes place only when inventory is less or equal to the re-order level s 

(i, j, k) → ( l = i,m = j + β; n = k ) if 0 ≤ i ≤ ∞;  0 ≤ j ≤ s;  0 ≤ k ≤ S − 2 

 

Now, the infinitesimal generator Ã can be conveniently expressed as a partition matrix- 

 Ã = Ai,j 

Ã =  

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

λ ∶                               
𝑙 = 𝑖 + 1; 𝑖 = 0,… ,∞ 
𝑚 = 𝑗;  𝑗 = 0,… , 𝑆       
𝑛 = 𝑘; 𝑘 = 0,… , 𝑆       

 β ∶                               
𝑙 = 𝑖; 𝑖 = 0,… ,∞         
𝑚 = 𝑗 + 𝛽; 𝑗 = 0,… , 𝑠
𝑛 = 𝑘; 𝑘 = 0,…∞        

μ ∶                              
𝑙 = 𝑖; 𝑖 = 0,… ,∞         

        𝑚 = 𝑗 − 1; 𝑗 = 𝑠 = 1,… , 𝑆
  n = k;  k = 1,… , S − 1

𝜃 ∶                                
𝑙 = 𝑖; 𝑖 = 0,… ,∞          
  𝑚 = 𝑗 − 1 ;  𝑗 = 0,… , 𝑆
 𝑛 = 𝑘 − 1; 𝑘 = 0,…∞  

 

𝛷 ∶                            
 𝑙 = 𝑖 − 1; 𝑖 = 0,… ,∞
  𝑚 = 𝑗;  𝑗 = 0,… , 𝑆       

            𝑛 = 𝑘 + 1 ; 𝑘 = 0,… , 𝑆 − 1

𝜃 + 𝜇 ∶                        
𝑙 = 𝑖; 𝑖 = 0,… ,∞          
𝑚 = 𝑗 − 1 ;  𝑗 = 0,… , 𝑆
𝑛 = 𝑘 − 1; 𝑘 = 0,… , 𝑆

−(𝜆 + 𝛽):                 
𝑙 = 𝑖; 𝑖 = 0,… ,∞
𝑚 = 𝑗;  𝑗 = 0,… , 𝑠
𝑛 = 𝑘; 𝑘 = 0         

     

−(𝜆 + 𝜃 + 𝛽):         
𝑙 = 𝑖; 𝑖 = 0   
𝑚 = 𝑗;  𝑗 = 𝑠
𝑛 = 𝑘; 𝑘 = 0

               

−(𝜆 + 𝜃 + 𝜇 + 𝛽):  
𝑙 = 𝑖 ; 𝑖 = 0,… ,∞
𝑚 = 𝑗;  𝑗 = 𝑠         
𝑛 = 𝑘; 𝑘 = 1         

      

−(𝜆 + 𝜃 + 𝜇):          
𝑙 = 𝑖 ; 𝑖 = 0,… ,∞       
𝑚 = 𝑗;  𝑗 = 𝑠 + 1,… , 𝑆
𝑛 = 𝑘; 𝑘 = 1,… , 𝑆       

−(𝜆 + 𝜃):                 
𝑙 = 𝑖 ; 𝑖 = 0                   
𝑚 = 𝑗;  𝑗 = 𝑠 + 1,… , 𝑆
𝑛 = 𝑘; 𝑘 = 0                 

−(𝜆 + 𝜃 + 𝛽 + 𝛷):
𝑙 = 𝑖 ; 𝑖 = 0,… ,∞
𝑚 = 𝑗;  𝑗 = 𝑠         
𝑛 = 𝑘; 𝑘 = 0         

        

−(𝜆 + 𝜃 + 𝛷):        
𝑙 = 𝑖 ; 𝑖 = 0,… ,∞         
𝑚 = 𝑗;  𝑗 = 𝑠 + 1, . . . , 𝑆
𝑛 = 𝑘; 𝑘 = 0                  

−(𝜆 + 𝜃 + 𝜇 + 𝛷):
𝑙 = 𝑖 ; 𝑖 = 0,… ,∞         
𝑚 = 𝑗;  𝑗 = 𝑠 + 1, . . . , 𝑆
𝑛 = 𝑘; 𝑘 = 1,… , 𝑆 − 1

 



 

 
378 

The infinitesimal generator matrix Ã of this process has the following block tridiagonal matrix structure- 

�̃� =

[
 
 
 
 
 
 
𝐵0 𝐴0 0 0 0 0 ⋯ ⋯
𝐴2 𝐴1 𝐴0 0 0 0 ⋯ ⋯
0 𝐴2 𝐴1 𝐴0 0 0 ⋯ ⋯
0 0 𝐴2 𝐴1 𝐴0 0 ⋯ ⋯
0 0 0 𝐴2 𝐴1 𝐴0 ⋯ ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋯]

 
 
 
 
 
 

 

 

where 𝐴𝑗,𝑚 is a sub-matrix, which is given by-  

𝐴𝑗,𝑚 = (

  𝐵0 𝑖𝑓 𝑚 = 𝑗; 𝑗 = 0                
    𝐴0  𝑖𝑓 𝑚 = 𝑗 + 1 ; 𝑗 ≥ 0       
  𝐴2 𝑖𝑓 𝑚 = 𝑗 − 1; 𝑗 ≥ 0         
  𝐴1      𝑖𝑓 𝑚 = 𝑗;  𝑗 ≥ 1,… , 𝑆 − 1   

 

 

𝐵0 = 

(

 
 
 
 
 
 
 
 

( 𝑔, ℎ) → (𝑔, ℎ) ∶ − (𝜆 + 𝛽)               𝑖𝑓 𝑔 = 0;  ℎ = 0                               
( 𝑔, ℎ) → (𝑔, ℎ) ∶ – (𝜆 + 𝜃 + 𝛽)        𝑖𝑓 𝑔 = 𝑠; ℎ = 0                                 
( 𝑔, ℎ) → (𝑔, ℎ) ∶ – (𝜆 + 𝜃 + 𝛽 + μ) 𝑖𝑓 𝑔 = 𝑠; ℎ = 1                                 
( 𝑔, ℎ) → (𝑔, ℎ) ∶ – (𝜆 + 𝜃)                𝑖𝑓 𝑔 = 𝑠 + 1,… , 𝑆; ℎ = 0               

( 𝑔, ℎ) → (𝑔, ℎ) ∶ – (𝜆 + 𝜃 + μ)        𝑖𝑓 𝑔 = 𝑠 + 1,… , 𝑆; ℎ = 1,… , 𝑆     
( 𝑔 − 1, ℎ) → (𝑔, ℎ) ∶  𝜃                       𝑖𝑓  𝑔 = 𝑠 …𝑆; ℎ = 0,… , 𝑆 − 1        
( 𝑔, ℎ) → (𝑔 + 𝛽, ℎ): 𝛽                         𝑖𝑓  𝑔 = 0,… , 𝑠; ℎ = 0,1                    

 ( 𝑔, ℎ) → (𝑔 − 1, ℎ − 1): μ                    𝑖𝑓 𝑔 = 𝑠 + 1,… , 𝑆, ℎ = 1,… , 𝑆 − 1

 ( 𝑔, ℎ) → (𝑔 − 1, ℎ − 1): μ + 𝜃            𝑖𝑓  𝑔 = 𝑠,… , 𝑆; ℎ = 1,… , 𝑆                
𝐴𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 ∶ 0            𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                           

    

𝐴0 = 𝑑𝑖𝑎𝑔(𝜆, 𝜆, …… , 𝜆) 

𝐴1 = 

(

 
 
 
 
 
 
 
 
 

( 𝑔, ℎ) → (𝑔, ℎ) ∶ − (𝜆 + 𝛽)                          𝑖𝑓 ℎ = 0                                            
( 𝑔, ℎ) → (𝑔, ℎ) ∶ – (𝜆 + 𝜃 + 𝛽 + 𝛷)          𝑖𝑓 𝑔 = 𝑠; ℎ = 0                                
( 𝑔, ℎ) → (𝑔, ℎ) ∶ – (𝜆 + 𝜃 + 𝛽 + μ)           𝑖𝑓 𝑔 = 𝑠; ℎ = 1                                 

( 𝑔, ℎ) → (𝑔, ℎ) ∶ – (𝜆 + 𝜃 + 𝛷)  𝑖𝑓  𝑔 = 𝑠 𝑖𝑓 𝑔 = 𝑠 + 1,… , 𝑆; ℎ = 0                

( 𝑔, ℎ) → (𝑔, ℎ) ∶ – (𝜆 + 𝜃 + μ + 𝛷)            𝑖𝑓 𝑔 = 𝑠 + 1,… , 𝑆; ℎ = 1,… , 𝑆 − 1

( 𝑔, ℎ) → (𝑔, ℎ) ∶ – (𝜆 + 𝜃 + μ)                    𝑖𝑓 𝑔 = 𝑠 + 1,… , 𝑆, ℎ = 2,… , 𝑆        

( 𝑔 − 1, ℎ) → (𝑔, ℎ) ∶ – 𝜃                                𝑖𝑓  𝑔 = 𝑠 …𝑆; ℎ = 0,… , 𝑆 − 1         
( 𝑔, ℎ) → (𝑔 + 𝛽, ℎ): 𝛽                                   𝑖𝑓  𝑔 = 0,… , 𝑠; ℎ = 0,1                     

 ( 𝑔, ℎ) → (𝑔 − 1, ℎ − 1): μ                             𝑖𝑓 𝑔 = 𝑠 + 1,… , 𝑆, ℎ = 1,… , 𝑆 − 1

 ( 𝑔, ℎ) → (𝑔 − 1, ℎ − 1): μ + 𝜃                      𝑖𝑓  𝑔 = 1…𝑆; ℎ = 1,… , 𝑆                   
𝐴𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 ∶ 0                        𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒                                              

 

𝐴2 = ( 𝑔, ℎ) → (𝑔, ℎ + 1: 𝛷)         𝑖𝑓𝑔 = 1,… , 𝑆; ℎ = 0,… , 𝑆 − 1 

 

Therefore, the partitioned matrix can be defined as- 

�̃� =  (

𝑔 → 𝑔 ;   𝑖𝑠  𝐵0         𝑖𝑓 𝑔 = 0
 𝑔 → 𝑔 + 1;   𝑖𝑠  𝐴0  𝑖𝑓𝑔 ≥ 0
𝑔 → 𝑔 − 1;   𝑖𝑠  𝐴2 𝑖𝑓 𝑔 ≥ 1
𝑔 → 𝑔;   𝑖𝑠  𝐴1                  𝑖𝑓 𝑔 ≥ 1,… , 𝑆

 

 

STABILITY CONDITION 

Let  𝐴 = 𝐴0 + 𝐴1 + 𝐴2 be the generator matrix of steady-state probability vector 𝜒. That is, 𝜒 fulfills the conditions  

𝜒𝐴 = 0 𝑎𝑛𝑑  𝜒𝑒 = 1 , where 𝑒 is a column vector of 1’s in the proper order. The queuing system is stable if and only 

if 

𝜒𝐴0𝑒 < 𝜒𝐴2𝑒 

According to the structure of the model, the stability condition of the queuing system under consideration may be 

determined as 

λ∑∑ ∑ χ(i, j, k)

𝑆

𝑘=0

<

𝑆

𝑗=0

∞

𝑖=0

 ϕ ∑∑ ∑ χ(i, j, k)

𝑆

𝑘=0

+   ϕ ∑ ∑ ∑ χ(i, j, k)

𝑆

𝑘=0

+  ϕ 

𝑆

𝑗=𝑠+1

∞

𝑖=0

∑ ∑ ∑χ(i, j, k)

𝑆

𝑘=𝑠

𝑆

𝑗=𝑠+1

∞

𝑖=0

 

𝑆

𝑗=𝑠

∞

𝑖=0

+ ∑ ∑ ∑ χ(i, j, k)

𝑆

𝑘=0

+  ϕ 

𝑆

𝑗=𝑠+2

∞

𝑖=0

∑ ∑ ∑ χ(i, j, k)

𝑆

𝑘=𝑠

+  ϕ 

𝑆

𝑗=𝑠+1

∞

𝑖=0

∑ ∑ ∑ χ(i, j, k)

𝑆

𝑘=0

 

𝑆

𝑗=𝑠+2

∞

𝑖=0
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THE STEADY-STATE ANALYSIS OF THE MODEL 

The steady-state probability vector of Ã under the stability criterion is determined in this section. The structure of the rate 

matrix Ã shows that {(P(t), I(t), B(t), t ≥ 0} is a continuous time Markov chain with state space given by 

𝐸 = E1 × E2 × E3 
 

The steady-state probability vector- 

𝜒 = (𝜒(0), 𝜒(1), 𝜒(2), 𝜒(3), ……… , 𝜒(9)) 

 

That is, 𝜒  satisfies the conditions- 

𝜒Ã = 0 and [ ∑ ∑ ∑ 𝜒(𝑖, 𝑗, 𝑘)]𝑆
𝑘=1

𝑆
𝑗=1 𝑒 = ∞

𝑖=0 1 

 

And the vector can be partitioned as- 

𝜒(𝑖) = (𝜒(𝑖, 𝑗, 𝑘); 𝑖 ≥ 0; 0 ≤ 𝑗 ≤ 𝑆, 0 ≤ 𝑘 ≤ 𝑗) 
 

And the components are given by- 

𝜒(i) = 𝜒(0) R𝑖, i≥0 

where R is the minimal nonnegative solution of the matrix quadratic equation- 

𝐴2 + R𝐴1 +𝐴0= 0 

 

The vector 𝜒(0) can be calculated using the equation 𝜒(0)[ 𝐵0 + R𝐴2] together with the normalizing condition- 

𝜒(0) (𝐼 − 𝑅)−1 = 1. 

 

The properties of the aforementioned terms and their applications to the theory of queues are deduced and demonstrated 

by Neuts [14] in depth. To determine the rate R, one can compute it using an exponential reduction method. 

 

SYSTEM PERFORMANCE MEASURES 

Some system performance measures are given below- 

i) The probability mass function of the number of customers in the pool: The probability that there are i, customers, in the 

pool is given by 

𝜒(𝑖)𝑒 = 𝜒(0)𝑅𝑖𝑒; 𝑖 ≥ 0 
 

ii) Expected number of customers in the pool is- 

Ρ1 = ∑𝑖

∞

𝑖=0

𝜒(𝑖)𝑒 = 𝜒(0)𝑅(𝐼 − 𝑅)−2𝑒 

 

iii) Expected Inventory level in the system is- 

Ρ2 = ∑ [∑𝑗

𝑆

𝑗=1

 ∑ 𝜒(𝑖, 𝑗, 𝑘)

𝑗

𝑘=1

]  𝑒 

∞

𝑖=0

 

 

iv) Expected customer Arrival rate to the pool is- 

Ρ3 = 𝜆 ∑  [∑ ∑ 𝜒(𝑖, 𝑗, 𝑘)

𝑆

𝑘=0

𝑆

𝑗=0

 ]  𝑒

∞

𝑖=0

 

 

v) Expected number of customers in the buffer is-  

Ρ4 = ∑[∑𝑗

𝑆

𝑗=1

 ∑ 𝑘 . 𝜒(𝑖, 𝑗, 𝑘)

𝑗

𝑘=1

]  𝑒

∞

𝑖=0

 

 

vi) Expected number of customers served in the system- 

Ρ5 = 𝜇 ∑ [∑ ∑ 𝜒(𝑖, 𝑗, 𝑘)

𝑗

𝑘=1

𝑆

𝑗=1

 ]  𝑒  

∞

𝑖=0

 

 

vii) Average quantity perished to the system is- 

Ρ6 = 𝜃 ∑ [∑𝑗

𝑆

𝑗=1

 ∑ 𝜒(𝑖, 𝑗, 𝑘)

𝑗

𝑘=1

]

∞

𝑖=0

𝑒 
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viii) Average rate of pooling customer transfer to the buffer: The Expected rate that a pool customer will enter the buffer 

is- 

Ρ7 = 𝛷 ∑ [∑ ∑ 𝜒(𝑖, 𝑗, 𝑘)

𝑗

𝑘=1

𝑆

𝑗=1

 ]  𝑒

∞

𝑖=0

 

 

COST FUNCTION OF THE SYSTEM 

The following formula has been used to analyze the total cost to various performance measures- 

Total Cost, 𝑇𝐶 = 𝐶1Ρ1 + 𝐶2Ρ2 + 𝐶3Ρ3 + 𝐶4Ρ4 + 𝐶5Ρ5 + 𝐶6Ρ6 + 𝐶7Ρ7 

Here 

𝐶1 = Cost of Pool customers in the system 

𝐶2 = Inventory holding cost of the system 

𝐶3 = Customer Arrival cost in the system 

𝐶4 = Buffer customer costs in the system 

𝐶5 = Service cost of the system 

𝐶6 = Perishability cost of the system  

𝐶7 = Cost of transferring a customer from poo to buffer in the system  

 

NUMERICAL ILLUSTRATION 

Several numerical results have been discussed in this part to conduct several related analyses- 

𝑆 = 3, 𝑠 = 1,  
𝑄 = 2, 𝜆 = 0.4, 𝛽 = 0.6, 𝜃 = 0.3, 𝜇 = 0.8,𝛷 = 0.7 

𝑐1 = 1, 𝑐2 = 2, 𝑐3 = 3, 𝑐4 = 1, 𝑐5 = 2, 𝑐6 = 3, 𝑐7 = 1 
 

Table 1 Arrival rate vs different performance measures 

 
𝝀𝟏 = 𝟎. 𝟏 𝝀𝟐 = 𝟎. 𝟐 𝝀𝟑 = 𝟎. 𝟑 𝝀𝟒 = 𝟎. 𝟒 𝝀𝟓 = 𝟎. 𝟓 

P1 8.4615 8.4615 8.4615 8.4615 8.4615 

P2 1.5216 1.5216 1.5216 1.5216 1.5216 

P3 0.13659 0.18212 0.18212 0.27318 0.31871 

P4 1.279 1.279 1.279 1.279 1.279 

P5 0.3437 0.3437 0.3437 0.3437 0.3437 

P6 0.4565 0.4565 0.4565 0.4565 0.4565 

P7 0.3187 0.3187 0.3187 0.3187 0.3187 
 

Table 2 Service rate vs different performance measures 

 
𝝁𝟏 = 𝟎. 𝟐 𝝁𝟐 = 𝟎. 𝟑 𝝁𝟑 = 𝟎. 𝟒 𝝁𝟒 = 𝟎. 𝟓 𝝁𝟓 = 𝟎. 𝟔 

P1 8.4615 8.4615 8.4615 8.4615 8.4615 

P2 1.5216 1.5216 1.5216 1.5216 1.5216 

P3 0.1821 0.1821 0.1821 0.1821 0.1821 

P4 1.279 1.279 1.279 1.279 1.279 

P5 0.21485 0.25782 0.30079 0.34376 0.38673 

P6 0.4565 0.4565 0.4565 0.4565 0.4565 

P7 0.3187 0.3187 0.3187 0.3187 0.3187 
 

Table 3 Replenishment rate vs different performance measures 

 
𝜽𝟏 = 𝟎. 𝟏 𝜽𝟐 = 𝟎. 𝟐 𝜽𝟑 = 𝟎. 𝟑 𝜽𝟒 = 𝟎. 𝟒 𝜽𝟓 = 𝟎. 𝟓 

P1 8.4615 8.4615 8.4615 8.4615 8.4615 

P2 1.5216 1.5216 1.5216 1.5216 1.5216 

P3 0.1821 0.1821 0.1821 0.1821 0.1821 

P4 1.279 1.279 1.279 1.279 1.279 

P5 0.3437 0.3437 0.3437 0.3437 0.3437 

P6 0.30426 0.45639 0.60852 0.76065 0.91278 

P7 0.3187 0.3187 0.3187 0.3187 0.3187 
 

Table 4 Reneging rate vs different performance measures 

 
𝜱𝟏 = 𝟎. 𝟏 𝜱𝟐 = 𝟎. 𝟐 𝜱𝟑 = 𝟎. 𝟑 𝜱𝟒 = 𝟎. 𝟒 𝜱𝟓 = 𝟎.5 

P1 8.4615 8.4615 8.4615 8.4615 8.4615 

P2 1.5216 1.5216 1.5216 1.5216 1.5216 

P3 0.1821 0.1821 0.1821 0.1821 0.1821 

P4 1.279 1.279 1.279 1.279 1.279 

P5 0.3437 0.3437 0.3437 0.3437 0.3437 

P6 0.4565 0.4565 0.4565 0.4565 0.4565 

P7 0.18212 0.22765 0.27318 0.31871 0.36424 
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SENSITIVITY ANALYSIS 
The sensitivity analysis of various performance measures vs total cost has been conducted in this part. 

 
Table 5 Rate of different parameters vs total cost 

Arrival 

Rate, 𝝀 
Total Cost 

Service 

Time, μ 
Total Cost 

Perishable 

Rate, 𝛉 
Total Cost 

Customer transferring Rate 

from pool to buffer, 𝜱 
Total Cost 

0.1 15.56907 0.5 15.4479 0.2 15.24888 0.4 15.56902 

0.2 15.70566 0.6 15.53384 0.3 15.70527 0.5 15.61455 

0.3 15.70566 0.7 15.61978 0.4 16.16166 0.6 15.66008 

0.4 15.97884 0.8 15.70572 0.5 16.61805 0.7 15.70561 

0.5 16.11543 0.9 15.79166 0.6 17.07444 0.8 15.75114 

 

Mathematical expressions for the relationship between total cost with different parameters- 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝜆 = 1.3659𝜆 + 15.1539 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡µ = 0.8594μ + 15.0182 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝜃 = 4.5639𝜃 + 14.3361  
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝛷 =  0.4553𝛷 + 15.3869 
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Fig. 3 (a) Graphical representation of different performance measures vs total cost and 

(b) The level of sensitivity for different parameters of this model 

 

From Table 5, and Fig. 3, it is observed that the perishable rate has a vital impact on the system. The increase in arrival 

rate has an impact on higher reordering and lost sales. It also increases the cost of carrying pool and buffer customers. 

Due to the increase in service rate, the cost changes with the service time. 

 

CONCLUSION 

In this research work, a stochastic inventory system with perishable commodities in a service facility with a maximum 

capacity for inventory S units has been analyzed. In this model, the Poisson process is considered for the customer’s 

arrival at the pool. The customer goes out from the buffer with any service, a transition is made by reducing the buffer 

size by one unit, and the inventory level is also reduced by one unit. When inventory levels exceed the number of 

customers in the buffer, a transition (perishability) occurs that reduces the inventory size by one unit. Considering this 

model, it is seen that- with the increase of arrival rate, service rate, perishability rate, and customer transfer rate from the 

pool to buffer the total cost increases. However, the perishability rate is found to be the most sensitive and has a high 

impact on the cost function. However, the customer transfer rate from pool to buffer has the least impact on the cost 

function. 
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