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Abstract 

The modeling and simulation of blood flow through an inclined artery with a tapering angle is the primary focus of this 

study. A mathematical model is developed to capture the dynamics of blood flow in this specific geometry. The 

dependable Homotopy perturbation method is employed to solve the governing equations, and the results are visually 

presented and analyzed. The study includes a comprehensive problem formulation, a solution strategy, graphical 

representation of simulated results, a quantitative examination of control parameters, and a summary of key conclusions. 

This research contributes to a better understanding of blood flow behavior in arteries with inclined and tapered 

geometries, which has implications for cardiovascular health and medical interventions. 
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INTRODUCTION 

The complex mechanism of blood flow via various body components and through different limiting environments has 

long fascinated scholars. Given that blood is the body's essential force, knowing how it works and what stops it from 

flowing freely is crucial to the body's optimal operation. Blood flow is essential for maintaining homeostasis and 

facilitating optimal interaction among the body's organs as it carries nutrients, waste products, hormones, and other 

compounds throughout the body, McDonald [1]. Similar to this, the body needs blood for several processes, such as 

temperature regulation, cellular infection defense, fluid balance, and oxygen transport. Researchers have given a great 

deal of time to studying this innate curiosity and have developed several mathematical models to theoretically 

comprehend its complex origin. Numerous factors, including pressure gradients, tube diameters, artery radii, and 

frequency of body acceleration, as well as pulsatile pressure gradients caused by heart action, stress, flow resistance, and 

flow rate, have been identified from the literature as either slowing down or completely inhibiting blood flow through the 

body, Watanabe and Shintao [2].  The condition of poor blood flow regulation is referred to as ischemia or hypoperfusion 

in the medical profession. This situation, where there is almost no blood flow, could be fatal for the body if transfusions 

from another source are not administered, Tanaka et al. [3]. 

Several studies in contemporary literature have modeled and simulated the flow characteristics of blood through 

an inclined artery with a tapered angle, considering various parameters. Vasu et al. [4] simulated two-dimensional 

rheological laminar hemodynamics via a mildly stenotic diseased tapering artery and considered the potential use of 

metallic nanoparticles floating in the blood for drug administration. Majekodunmi et al. [5] investigated numerically the 

impact of tapering on blood flow via a stenosed artery using a non-Newtonian model. They discovered that while the 

radial velocity, wall shear stress, and flow resistance decrease, the flow rate and axial velocity rise as the tapering angle 

increases. Driver examined the impact of the bifurcation angle on flow factors in bifurcated arteries. [6]. It was observed 

that an increase in bifurcation angle led to an increase in recirculation, resulting in constriction of blood flow and an 

increased pressure gradient. In a study by Haghighi et al. [7], pulsatile blood flow through a tapered artery with a non-

symmetric stenosis was simulated, and the flow characteristics were compared between elastic and inelastic arteries. 
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Srivastava [8] investigated pulsatile blood flow through an inclined stenosed artery using the Herschel-Bulkley model and 

derived an exact solution for the flow characteristics. 

A simulated non-symmetric stenosis in a tapering artery was the subject of a two-dimensional model of pulsatile 

blood flow explored by Reza et al. [9]. With an axially non-symmetric stenosis and a time-dependent geometry, the blood 

flow measured as a cross fluid is represented in an elastic cylindrical tube. Within elastic and inelastic arteries, the blood 

flow velocities are contrasted. The governing equations are simplified through the use of a mild stenosis approximation. 

with the use of a suitable coordinate transformation. Using the Bessel function, Chitra et al. [10] observed the analytical 

solution to the mathematical modeling of unsteady MHD oscillatory blood flow in an inclined tapering stenosed artery 

with a permeable wall. The combined effects of thermal radiation and a magnetic field on blood flow in an inclined, 

tapering, stenosed porous artery have been studied by Abubakar and Adeoye [11]. Bakheet al. [12] implemented the 

blood flow for laminar, unsteady, and incompressible flow through a flexible stenosed artery utilizing the Marker and cell 

numerical technique in conjunction with the successive over-relaxation for the pressure gradient. 

            The impact of a heat source and magnetic field on blood flow through an inclined tapered channel has been 

investigated by Bunonyo and Ebiwareme [13] using the series approach. According to the study's findings, heat sources 

aid in blood circulation, while magnetic fields increase blood velocity. Analysis of the blood flow characteristics through 

an inclined tapered porous artery with minor stenosis under the influence of an inclined magnetic field has been addressed 

by Srivastava [14]. Using the homotopy perturbation method, Tripathi and Sharma [15] have addressed the issues of 

changing viscosity, magnetohydrodynamic effects, and chemical reaction on inclined arterial blood flow. Bunonyo et al. 

[16] have looked at the mathematical modeling of blood flow via a stenosed artery with heat in the presence of a magnetic 

field. Bunonyo and Ebiwareme [17] examined the influence of modeling inclined angles and magneto-hydrodynamics on 

blood flow through a gradient-tapered vessel. Their findings indicated that magnetic fields tend to increase blood flow 

velocity. Additionally, Bunonyo and Ebiwareme [18] discussed the theoretical evaluation of a magnetic and conducting 

fluid flow through a blood vessel, considering factors such as inclination and chemical reaction. 

               The Homotopy Perturbation Method (HPM) is a semi-analytical technique devised by Ji-Huan He in the late 

1990s, known for its effectiveness in solving linear and nonlinear differential equations. Its popularity has grown due to 

its versatility, ease of use, and ability to tackle complex mathematical problems that are challenging for traditional 

analytical or numerical methods. The HPM is based on the concept of homotopy, which involves transforming a 

complicated differential equation into a simpler one called a homotopy equation. This method excels at handling a wide 

range of problems, including linear and nonlinear differential equations as well as partial differential equations. It is 

particularly adept at dealing with systems that have diverse initial conditions, boundary settings, and variable coefficients. 

Its flexibility in handling singularities or abrupt changes in values makes it indispensable in the fields of science and 

engineering. The HPM demonstrates excellent convergence characteristics, ensuring rapid and accurate convergence of 

the solution. The auxiliary parameter can be adjusted to control the convergence of the series solution. Overall, the HPM 

surpasses traditional perturbation techniques by providing precise solutions, even for highly nonlinear systems. It has 

been successfully applied to a multitude of scientific and technical challenges, with applications found in control systems, 

biology, physics, mechanics, and finance. Problems involving heat transfer, fluid dynamics, population dynamics, 

nonlinear oscillations, and various other topics have been resolved using the HPM. Furthermore, advancements in the 

HPM have expanded its applications, such as the fractional order HPM, which allows for the solution of fractional 

differential equations. The studies highlighted below provide detailed applications of HPM to a variety of problems across 

various disciplines [19–36]. 

This study focuses on the formulation of a mathematical model to simulate the dynamics of blood flow through a 

tapered artery. The efficient homotopy perturbation method is employed to solve the equations that describe the flow 

fields. The obtained results are visually presented and thoroughly analysed. The research is organized into several 

sections: Section 2 presents the problem formulation, considering all relevant assumptions. In Section 3, the solution 

strategy for the non-dimensional governing equation is explained. The subsequent section showcases the graphical 

representation of the simulated results for various parameters. Section 5 offers a quantitative analysis of the results 

obtained, considering the variation in control parameters. Finally, Section 6 provides a comprehensive summary of the 

study's main conclusions. 

 

MATHEMATICAL FORMULATIONS  
Let us consider the fluid to be non-Newtonian, incompressible, electrically conducting, and flowing through an inclined 

artery with a tapered angle . In addition, the flow is driven by the temperature and the specie concentration difference, 

where they were affected by inclination at angles 2 and 3 . The wall of the artery was considered porous and allows the 

passage of magnetic field which affects the moving electrically conducting fluid. The original models depicting the fluid 

flow through a tapered and inclined artery follows those used by Srivastava [8], and Bunonyo and Ebiwareme [13]. The 

momentum equation is presented as: 

 

      (1) 

* 2 * * *

* *2 * * *

1P u u u
F J B

z r r r k


 

   
       

   



 

 
283 

According to Darcy’s law, the blood velocity is: 

           (2) 

According to Bunonyo and Ebiwareme [13], the current density and magnetic field relation is given as: 

         (3) 

          (4) 

Substituting equations (2)-(4) into equation (1), we have the modified momentum equation as: 
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(5)

  

In order to investigate the impact of the temperature and specie concentration differences on the fluid flow, we introduce 

the energy equation with a source according to Bunonyo and Amos [16] as: 

      (6) 

      (7)  

Equations (5)-(7) are subject to the following boundary conditions: 

       (8)   

The dimensionless parameters are: 

  (9) 

Using equation (8), the momentum and energy equations (5) to (7) reduce to the form. 
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Equations (9)-(12) are subjected to the following boundary conditions: 
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Since we considered the blood flow to be steady, 0 and 0
t t
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 
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, then equations (10)-(13) reduces to the following: 
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Equations (9)-(12) are subjected to the following boundary conditions: 
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Mathematical Application of Homotopy  

In order to solve equations (15)-(18) using the Homotopy Method (HPM), we construct homotopies as follows: 
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where  0,1p ,  f r is a known analytical function,  and L N is linear and nonlinear functions.  

Equations (19), which can be written in power series as: 
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Equations (20)-(22) can be differentiated as:  
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We shall construct the Homotopy of equations (14)-17), we have the following: 
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Equations (33)-(36) are subjected to the following boundary conditions: 
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Solving equations (33)-(36) subject to the boundary condition in equation (37), we have: 
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Substituting equations (38) and (41) into equation (21), we have: 
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In a similar vein, we shall form the Homotopy equation for the concentration as: 
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Substituting equations (22), (25), and (28) into equation (16) and (17), we have: 
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 

2 2 2 2
2 2 31 2 1 2

2 2 2 2

2 2 2
2 2 2 3 20 0 1 1 2 2
3 0 3 1 3 22 2 2

, 0
1 1 1

p p p p
r r r r

H p

p p p
r r r r r r r r r

   


     

     

       
      

       
  

           
                       

 
(48) 

Resolving equation (52), we have: 
2

0

2
: 0p

r





          (49)  

22
1 20 01

3 02 2

1
: 0p

r r r r

 
 

 
   

  
       (50)  

2
2 22 1

2 12

1
: 0p

r r r

 
 

 
  

 
        (51)  

3 22
2 2

1
: 0p

r r


 


 


         (52)  

Equations (53)-(56) are subjected to the following boundary conditions: 

0 1

0 1

1, 1       at  

0, 0      at  0

r h

r

 

 

   


   
         (53) 

Solving equations (53)-(56) subject to the boundary condition in equation (57), we have: 

 0

r
r

h
             (54) 

Differentiating equation (58), we have: 

 
2

0 0
0 2

1
, , 0

r
r

h r h r

 


 
  

 
        (55) 

Substitute equation (59) into equation (54), we have: 
2 2 22

3 31 1
32

1 1
; ln

2

r r
r c

r hr h r h h

   
      

 
      (56) 

Solving equation (60), we have:  

   
2 3 2 3

3 3
1 1 2 3 4

1 1
ln ln

6 6

r r
r r r rc c r r r rc c

h h h

 


 
          

 
   (57) 

Solving equation (40), we have:  

   
2 3 2 3

3 3
1 1 2 3 4

1 1
ln ln

6 6

r r
r r r rc c r r r rc c

h h h

 


 
          

 
   (58) 

Substituting equations (38) and (41) into equation (21), we have: 

   
2 3

3
0 1 3 4

1
, ln

6

rr
r t r r r rc c

h h


  

 
        

 
     (59) 

Solving equation (42) using the boundary condition in equation (21), we have:  

 
2 2

3
3

1
ln 1

6

h
c h

h

 
   

 
         (60)  

     
2 3 2 2

3 31
, ln ln 1

6 6

r hr r
r t r r r h

h h h

 


   
         

   
    (61)  

In a similar vein, we have: 
2

2

2 32

1Re u u
sin u Grcos Gcsin

Fr r r r
     

 
    
 

     (14) 

      0, 1 ( ) ( ) ( ) ( ) ( ) 0H u p p L u L u p L u N u f r           (62)  

We shall construct the Homotopy of equations (14), we have the following: 

 
22

0
0 2 2

,0 ( ) ( ) 0
uu

H u L u L u
r r


    

 
       (63)  
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 
2 2

2

12 2

1
,1 ( ) ( ) ( ) ( ) 0

u u
H u L u N u f r u f r

r r r


 
       

 
    (64) 

   
22 2

20
1 2 32 2 2

1
, 1 0

uu u u Re
H u p p p u sin Grcos Gcsin

r r r r r Fr
     

     
            

     
  (65) 

 

Substituting equations (20), (23) and (26) into equation (65), we have:  

   
 

2 2
20 01 1

2 22 1 0 12 2
0 01

2 2 2

2 3

1 1

, 1 0

u uu u
p p u u p

u uu r r r r r rH u p p p p
r r r Re

Grcos Gcsin sin
Fr



    

   
                  

         
 

 (66) 

   
 

   

2 2
20 01 1

2 22 1 0 12 2
0 01

2 2 2

0 1 2 0 1 3

1 1

, 1 0

u uu u
p p u u p

u uu r r r r r rH u p p p p
r r r Re

p Grcos p Gcsin sin
Fr



      

   
                  

           
 

   (67) 
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2 2
2 2 2 2 2 2 21 1 1

1 1 1 2 1 32 2

1
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1

u uu pRe
p p p u p p Grcos p Gcsin sin

r r r r Fr

u u u
p p p u p p Grcos p Gcsin

r r r r

     

    

  
      

    
   
      

   

  (68) 
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r





          (69)  
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1 20 01

1 0 0 2 0 32 2
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u uu Re
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   (70)  

2 21
1 1 1 2 1 3

1
: 0

u
p u Grcos Gcsin

r r
    


   


      (71)  

 

Equations (69)-(71) are subjected to the following boundary conditions: 

0 1 0 1 2

0 1
0 1 2

0, 0, 1, 1, 1              at  

0, 0, 0, 0, 0       at  0

u u r h

u u
r

r r

  

  

      

 

      
  

     (72) 

 

From the boundary condition in equation (72), we have: 

0 0 0, ,
r r

u
h h

              (73) 

 

Solving equation (70) subject to the boundary conditions in equation (72), we have: 
2

21
1 2 32

u r r Re
Grcos Gcsin sin

r h h Fr
    


   


      (74) 

 

Simplifying equation (74), we have:  
2 3 3 2

2

1 1 2 3 5
2 6 6 2

r r r r Re
u Grcos Gcsin sin rc

h h Fr
             (75) 

 

Simplifying equation (75) using the boundary condition in equation (72), we have: 

     
2 2 2

21
2 3, 1

2 3 2 2 3 2 2 2

r r r h r r h rRe
u r t r hr Grcos Gcsin r hr sin

h h h Fr

 
   

    
             

              
(76) 

 

RESULTS 

Having solved the formulated models using HPM, the obtained blood velocity, temperature, specie concentration profiles 

were obtained. We used Wolfram Mathematica, version 12 to perform the numerical simulation where the pertinent 

parameters were varied to study their effect on the various flow profiles. The parameter values were obtained from 

previous research by Bunonyo and Ebiwareme [13], and the results are presented in the order of temperature, 

concentration, and velocity profiles respectively.  
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Temperature Profile 

           
Fig. 1   Effect of radiation on temperature profile of the fluid       Fig. 2   Effect of Prandtl number on temperature profile of the fluid 

 

Concentration Profile 
The simulated specie concentration profile results for the reaction and Schmidt numbers are presented as follows: 

 

    
       Fig. 3 Effect of chemical reaction on concentration profile    Fig. 4 Effect of Schmidt number on the concentration profile 

                                            of the fluid          of the fluid 

 

Velocity Profile 

The simulated results of the blood velocity profile can be presented for different varying pertinent parameters as follows: 

 

 
Fig. 5   Effect of Darcy number on the velocity profile of the fluid 

 
Fig. 6 Effect of magnetic field on the velocity profile of the fluid 
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Fig. 7 Effect of thermal Grashof number on the velocity profile of 

the fluid 

 
Fig. 8 Effect of solutal Grashof number on the velocity profile of 

the fluid 

 
Fig. 9  Effect of tapered angle on the velocity profile of the fluid 

 
Fig. 10 Effect of Froude number on the velocity profile of the fluid 

 
Fig. 11   Effect of Reynolds number on velocity profile of the fluid 

 

DISCUSSION 

Given the presentation of the simulated results in Section 4, we can discuss the results as follows: Figure 1 depicts the 

effect of radiation on the fluid temperature profile. The result shows that the temperature was at its peak at zero thickness 

at the walls of the artery; however, the temperature began to decrease as the boundary layer thickness increased and 

converged to zero at the maximum thickness of the boundary layer. Figure 2 illustrates that the increase in the Prandtl 

number causes a corresponding rise in fluid temperature. It was observed that the fluid temperature was maximum at zero 

wall thickness; however, the temperature began to decrease with increasing Prandtl values until it converged to zero at 

maximum thickness. In a similar vein, Figure 3 depicts the influence of the chemical reaction on the specie concentration 

in the fluid. The figure clearly illustrates that the concentration was minimal at the zero-wall thickness level; however, the 

concentration began to increase with an increase in chemical reaction along with the increase in the wall thickness until it 

reached a convergent concentration as the thickness attained a maximum. Figure 4 illustrates the influence of the Schmidt 

number on specie concentration in the fluid. The result is of the view that the specie concentration was zero at zero wall 

thickness for a specific Schmidt number value; however, the concentration increases for different values of the Schmidt 

number as the thickness level increases and converges at unity at the maximum wall thickness. The influence of the Darcy 
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number on the fluid velocity is presented in Figure 5. The result illustrates a maximum velocity at zero wall thickness on 

the walls of the artery. However, the increase in Darcy's number increases the velocity, but it decreases to zero at 

maximum thickness. 

When a magnetic field comes into contact with a moving electrically conducting fluid, such as blood, it generates 

a force called the Lorentz force, which inhibits the velocity of the fluid, as depicted in Figure 6. The result is of the view 

that there was maximum velocity at zero wall thickness, but that velocity was observed to be decreasing for the increasing 

values of the magnetic field until it converged at zero velocity at maximum wall thickness. Figures 7 and 8 illustrate the 

influence of thermal Grashof and solutal Grashof numbers on the fluid velocity. The results showed maximum velocity at 

zero wall thickness but drastically increased with an increase in the Grashof and solutal Grashof numbers, respectively. 

However, the velocity decreases to zero at maximum wall thickness. The influence of the tapered angle on blood velocity 

was investigated, and the result confirmed maximum velocity at zero wall thickness, as illustrated in Figure 9. Figure 10 

elucidates the influence of the Froude number on blood velocity and finds the velocity to be maximum at the zero-

boundary layer thickness. In addition, the velocity profile decreases with an increase in the Froude number; however, the 

velocity decreases to zero as the thickness reaches its peak. Reynolds number influence was investigated as illustrated 

using Figure 11; the result showed a normal trend of maximum velocity at the zero-boundary layer thickness; however, 

we observed an increase in blood velocity for an increase in Reynolds number along the channel; the velocity attains zero 

at the maximum thickness. 

 

CONCLUSION  

Having carried out the research titled Modeling and Simulation of Blood Flow through an Inclined Artery with a Tapered 

Angle, with specific objectives achieved, we conclude as follows: 

1. An increase in radiation and Prandtl number increases the fluid temperature. 

2. The increase in chemical reaction and Schmidt number increases the specie concentration. 

3. There is an increase in blood velocity for an increase in Darcy number. 

4. A magnetic field increase decreases the velocity of the fluid. 

5. The fluid velocity increases with an increase in thermal Grashof and solutal Grashof numbers. 

6. The fluid velocity decreases with an increase in Froude number. 

7. An increase in Reynolds’ number caused a corresponding increase in fluid velocity. 
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