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Abstract

The new three-parameter exponentiated power Chris-Jerry distribution is introduced, and some of its mathematical
properties are addressed. Its parameters are estimated by maximum likelihood. A regression model called the log-
exponentiated power Chris-Jerry distribution regression model is constructed based on the logarithmic transformation of
the proposed distribution. We derived the basic properties of the distribution and showed the flexibility of the proposed
model using the plots of the hazard rate function. The new regression model is deployed to fit COVID-19 censored data
with the age of patients and diabetic index as the regressors. The usefulness of the proposed model is proved using the
infant mortality rate for some selected countries in 2021.
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INTRODUCTION

Survival analysis and reliability engineering are gray areas of application of many emerging distributions due to the
central role they play in society. To innovate some existing distributions, various methods exist, and important to this
article is the exponentiated-G method. This method introduces an additional shape parameter to a baseline distribution
which subsequently creates varying shapes and improves the applicability of the existing distribution. Examples of
articles of this class are exponentiated power Ishita by Ferreira and Cordeiro (2023), exponentiated Ishita by Rather and
Subramanian (2019), exponentiated power Lindley by Ashour and Eltehiwy (2015), and exponentiated Adya by Ganaie et
al. (2023). Other related studies are Ezeilo et al. (2023), Gomaa et al. (2023), Bhat et al. (2023), Baageel et al. (2023),
Ramadan, A. H. Tolba, and El-Desouky (2022), Musa, Onyeagu, and O. J. Obulezi (2023a), Musa, Onyeagu, and O. J.
Obulezi (2023b), A. Tolba et al. (2022), A. H. Tolba, Muse, et al. (2023), A. H. Tolba, Onyekwere, et al. (2023), and
Nwankwo et al. (2023).

Exponentiation has dominated the method of extending members of the Lindley class of distributions which
include Etaga et al. (2023), Innocent et al. (2023), Anabike et al. (2023), Lindley (1958), O. J. Obulezi, Anabike, Okoye,
et al. (2023), Oramulu et al. (2023), O. J. Obulezi, Anabike, Oyo, et al. (2023), O. Obulezi, Igbokwe, and Anabike (2023),
0. J. Obulezi, Chidimma, et al. (2023), and Onyekwere and O. J. Obulezi (2022). The resulting distributions lend
themselves to a reparametrized regression model which is the main idea conveyed in this article. The log transformation
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of a distribution to a reparametrized regression model is a development that is very interesting in mathematical statistics
because it is an integration of two areas of statistics to create a wider application, see Ferreira and Cordeiro 2023 for a
detailed perspective.

For the COVID-19 data with two features namely the age of patients and diabetic history, the proposed will make
a good fit and add to existing literature. Essentially, comparing it will members of the same Lindley class of distributions
will demonstrate its usefulness.

To this end, the motivation for this article is to innovate a new parametric regression model that will be able to fit
some skewed censored data and the rest of the article is in the following arrangement; in section 2, the new model is
formulated. In section 3, some of the properties are presented. In section 4, the estimation of the uncensored data
procedure is presented. In section 5, the log-transformed regression model equivalent of the proposed distribution is
derived together with the estimation. In section 6, an application to the life cycle of COVID-19 patients with a history of
diabetic Mellitus with their age disparity is done. In section 7, the second application on the infant mortality rate of some
countries in 2021 is also done. The paper is concluded in section 8.

THE PROPOSED MODEL
Ezeilo et al. 2023 introduced the Power Chris-Jerry distribution with probability density function (p.d.f) and cumulative
distribution function (c.d.f) given respectively as
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The exponentiated-G family of distributions was developed by Lehmann 2012 and Durrans 1992. A random variable X is
said to follow Exponentiated-G distribution if its c¢.d.f and p.d.f are respectively

F(z;c,§) = G(z;€)° (3)

and
fl;6,8) = egla: )G (x; ) (4)
where £ is the parameter vector of G(.). By substituting eq 1 into eq 3 and eq 2 into eq 4 the cdf and pdf of the X ~ EPCJ
(¢, 0, o) are obtained as follows;
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The hazard function is given as
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Definition 2.1 (Linear Representation of EPCJ distribution). Using Binomial theorem on
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Again, using binomial on [l + W} , one obtains
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the linear form becomes
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Therefore; a concise linear representation of the p.d.f of the EPCJ distribution is
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Fig 1 and fig 2 are the plots of the p.d.f while fig 3 and fig 4 are the plots of the c.d.f. From the plots of the hazard

function, the proposed EPCJ distribution has both L-shape, decreasing, and increasing shapes suggesting wider
applications.
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Figure 3: pdf of X ~ EPCJ (¢, 0, a) Figure 4: pdf of X ~ EPCJ(c, 6, a)
PROPERTIES

Definition 3.1 Let X ~ EPCJ (¢, 6, o), then the r™ crude moment is given as follows;
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The mean, 2", 3" and 4™ crude moments are obtained by replacing r with 1, 2, 3 and 4 in z'.

Definition 3.2 (Moment generating function). Let X ~ EPCJ (c, 6, &), then the moment generating function
My(t) can be expressed as

MAXIMUM LIKELIHOOD ESTIMATION UNDER COMPLETE DATA
Let X ~ EPCJ (¢, 6, ), then the maximum log-likelihood is given as follows;
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The log-likelihood yields,
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LOG-EXPONENTIATED POWER CHRIS-JERRY DISTRIBUTION REGRESSION MODEL

Let Y =log (X) where X ~ EPCJ (c,a,#) defined in eq 6. Define o = % and # = 3—5) the log-Exponentiated
Power Chris-Jerry (LEPCJ) density for y € R is
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where ¢,0 > 0 and g € R. If X ~ EPCJ (¢, 0,a), then Y = log(X) ~ LEPCJ (c,0,u). The survival and
density function of Z = YU;‘“ are
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respectively, where w(z) = e - (l +e - ) Using eq 23, we construct a parametric regression model for

the response variable Y; and a vector of explanatory variables V; = (vi1, vi2, ..., Vip) aS
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where ui =v' B, f = (b1, ..., Bp)" is the vector of unknown regression coefficients and z is the random error with density in
equation 12. Define the survival and density functions of Y;|v'are

and
V) = % {i-]i+ (7:?} - }H (26)

TZa—fq 2oz,4p

where w(z;) = e = (1 +e = ) and z; = Y=t

MAXIMUM LIKELIHOOD UNDER CENSORED DATA
To estimate the parameters in eq 24 for right-censored data, we define Y; and C; as the lifetime and noninformative
censoring time (assuming independence) and y; = min(Y;, C;). Then, the log-likelihood function for &= (¢, o, 87" is
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where F and C are the sets of uncensored and censored observations respectively and d is the number of failures. The
MLE ¢ of the unknown parameter vector can be obtained by maximizing eq 27.

SIMULATIONS

The simulation conditions deployed by Ferreira and Cordeiro 2023 are used in this article due to the compatibility of the
two distributions. For the EPCJ distribution under different scenarios, the accuracy of the MLEs is examined. For 1000
repetitions, the acceptance and rejection method is adopted to generate random samples of sizes n = 50, 100, 300, and 600
from the EPCJ distribution. The Average estimates (AEs) of the parameters, Biases, and mean squared error (MSES) are
calculated. The algorithm for generating random samples uses the acceptance-rejection method, see ibid.
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Figure 5: Histogram and estimated pdf for generated Figure 6: Empirical cdf and estimated cdf for generated
samples using the scenario (1.4, 5.0, 7.0) samples using the scenario (1.4, 5.0, 7.0)

Figures 5 and 6 show the approximation of the acceptance-rejection method. The estimated pdf and cdf of EPCJ
distribution are very close to the histogram and empirical cdf of the generated samples. This indicates a good performance
of the method.

The statistics in Table 1 indicate that the AEs converge to the true parameters and that the biases and MSEs tend
to zero when n increases, which proves the consistency of the EPCJ estimators. Note that for the (2.0, 0.5, 10) scenario
the parameter estimates are less accurate (except for o), while for the (1.4, 5.0, 7.0) scenario, the parameter estimates are
more accurate (for ¢ and 6). Overall, the simulation results suggest that larger sample sizes and the appropriate choice of &
are crucial for accurate parameter estimation of the EPCJ distribution. This is the same conclusion reached by ibid.




Table 1: Simulation measures from the EPCJ distribution

(2.0,0.5,10) (1.4,5.0,7.0) (3.0,3.5,9.0)
n_ £ AE Bias MSE AE Bias MSE AR Bias MSE
50 ¢ 04108 -1.5892  2.5421 0.2573 -1.1427  1.3161 0.4346 -2.5654  6.5993
9 262835 00188 478116  11.7584 47584 755373  19.8086 10.8986 231.7607
a 14188 1.5892  0.9555 18.0815 13.0815 2154634  11.5636 8.0636  73.2655
100 ¢ 03877 -1.6123  2.6082 0.2564 -1.1436  1.3146 0.4048 -2.5052  6.7454
g 225304 12.5304 266.0897  9.6005 2.6005 321256  17.6725 8.6725  159.325
a 14115 09115  0.9032 16.9036 11.9036 167.0537  11.7306 8.2306  74.1056
300 ¢ 03968 -1.6032 2.5738 0.2759 -1.1241  1.2661 0.4139 -2.5861  6.6922
g  16.8067 6.8067 63.3039 6.9566 -0.0434 2.1214 12.6518 3.6518  24.0334
a 13101 08109 0.6817 14.5183 9.5183  906.4223  10.7852 7.2852  55.0501
600 ¢ 04019 -1.5981  2.5560 0.2846 -1.1154  1.2455 0.4215 -2.5785  6.6504
¢ 153365 5.3365  35.0927 6.4197 -0.5803  1.0891 11.3955 2.3955  9.1690
a 12761 0.7761  0.6149 13.8106 8.8106 80.2566  10.4080 6.9080  48.6338

APPLICATION TO COVID-19 DATA

The dataset comprises the lifetime (in days) of 322 individuals diagnosed with COVID-19 through RT-PCR screening in
Campinas, Brazil. These data were previously studied by ibid. The response variable yi represents the time elapsed from
the onset of symptoms until death due to COVID-19 (failure). ibid. observed that about 66.45% of the observations are
censored. The variables considered (for i = 1, ..., 322) include: ¢; : censoring indicator (O = censored, 1 = observed
lifetime), vi; : age (in years), and v;, : diabetes mellitus (1 = yes, 0 = no or not informed). The suggested regression model
for these COVID-19 data is written as;

Vi= ﬂo + ﬂlvil + ﬂZViZ + o0z;, i= 1,.., 322, (28)

where z; ~ the pdf in eq 20.

The power Lomax (PLO) distribution by Rady, Hassanein, and Elhaddad 2016, exponentiated power Akash (EPA)
distribution (new), power Prakaamy (PP) distribution by Shukla and Shanker 2020, Exponentiated Power Lindley (EPL)
distribution by Ashour and Eltehiwy 2015 and power Rama (PR) distribution by Abebe et al. 2019 are used to compare
with the proposed Exponentiated Power Chris-Jerry (EPCJ) distribution. Note, that the log- of each distribution is derived
following the procedure in section 5 to obtain LPLO, LEPA, LPP, LEPL, and LPR respectively.

The result from table 2 shows that the explanatory variables age and diabetes mellitus are significant at the 5%
significance level. The negative signs of £; and 8, mean that older individuals or those with diabetes tend to have shorter
failure times. This result is in agreement with that obtained from Ferreira and Cordeiro 2023 earlier study. From Table 3,
the LEPCJ regression has the lowest criterion values hence confirming that the LEPCJ model provides a better fit for the
COVID-19 data.
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Table 2: Estimates of the Regression parameters for the COVID-19 data
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Table 3: Measures of Model Adequacy

Distr AIC CAIC BIC HQIC

LEPCJ 430.2712 430.6279 449.1439 437.8058
LPLO  431.8449 432.2016 450.7177 439.3795
LEPA  433.6238 433.9805 452.4999 441.1584
LPP 645.113  645.3796 660.2112 651.1407
LEPL  430.2784 430.6351 449.1512 437.8130
LPR 641.4597 641.7264 656.5579 647.4874

APPLICATION TO INFANT MORTALITY RATE DATA
The data on infant mortality rate per 1,000 live births for a few chosen nations in 2021, as reported by
https://data.worldbank.org/indicator/SP.DYN.IMRT.IN. The data set is presented in Table 4 below;

Table 4

56 10 22 3 69 6 7 11 4 4 19 13 7 27
12 3 4 11 84 27 25 6 35 14 11 12 6

The following model adequacy statistics are used; Akaike information criterion (BIC), Corrected Akaike Information
criterion (CAIC), Bayesian Information Criterion (BIC), Hannan—Quinn information criterion (HQIC), the model
performance is proved since the proposed distribution has minimum value for each of the criteria. The K-S, Cramer von
misses W=, Anderson Darling statistics A, and p-value for the proposed distribution show evidence that the new
distribution fits the given data more than the competitors.

Table 4: Analytical Measures of Fitness and Adequacy for the infant mortality rate

Distr NLL  AIC CAIC  BIC HQIC W~ A® K-S  P-value Rank
EPCJ 102,59 211.035 212.078 214.922 212,191 0.038 0.261 0.095 0.9664
EPA 102,58 211.016 212.059 214.903 212.172 0.038 0.261 0.096 0.9658
PP 106.07 216.132 216.632 218.724 216.902 0.112 0.731 0.164 0.4596
PR 105.8  215.602 216.102 218.193 216.372 0.113 0.741 0.160 0.4933
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Table 5: MLEs for the parameters (e, #, @) using the infant mortality rate data

Distr ¢ g o
5220.3257 R&.5601 0.1311
BPCT 0.0005)  (10.5592) (0.1379)
EPA 7823.7103 7.4998 0.1412
(0.0001)  (L.7445)  (0.0334)
PP 1.4559 0.5054
(0.1947)  (0.0463)
PR 0.7371 0.5964
(0.1383)  (0.0615)
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Figure 10: boxplot of the infant
mortality rate data
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Figure 13: density, cdf, survival function, and TTT plots of the infant mortality rate data

Fig 10 and fig 11 are the boxplot and violin plots of the infant mortality rate data with outlier points very visible. Given
that the proposed model best fits the data among competing distributions, it demonstrates the applicability of the EPCJ
distribution in modeling skewed data sets. Similarly, fig 13 and fig 14 display graphically how well the proposed model
fits the infant mortality data.
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CONCLUDING REMARKS

A new lifetime distribution with the potential of modeling skewed data has been proposed and studied in this article. The
properties of the proposed distribution were derived and the log-transformation has been used to create a parametric
regression model called the log-exponentiated power Chris-Jerry distribution regression model. The maximum likelihood
estimation aided the estimation process for uncensored samples while the procedure for the estimation of the unknown
parameters when data is censored was also shown. Essentially, the censored COVID-19 data set with the age of patients
and diabetic mellitus index was deployed to justify the importance of the distribution. Furthermore, the distribution was
fitted to the data on infant mortality rate (below age 5 years) reported for some countries by the World Health
Organization in 2021. The distribution performs pretty well in both instances of application.
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